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Parallelization in Inferences

aGrUM’s multithreading facility




BN structure learning : Greedy Hill Climbing

1 Gpest < initial graph (empty)
2 SCpest < Score(Gpest)
3
4 repeat
5 found « false
6 foreach G’ € neighborhood of Gpest dO
7 sc’ «+ Score(g")
8 if s’ > scpest then
9 L Gbest  G'» SCpest « SC’
10 found « true

11 until found = false;
12
13 return Gyt
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learning structure with 10K records

04} :

Learning time
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» aGrUM’s rule : Number of records per thread > 512
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Number of threads in pyAgrum : the rationale

g aGrUM’s rules :

@ pyAgrum manages a < package-wide > number of threads
= by default, same number for all multithreaded objects

@ Objects can override this number
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pyAgrum’s Package-wide API

import pyAgrum as gum

» Package-wide functions :

function meaning
gum.getMaxNumberOfThreads | The number of processors of
the computer
gum. getNumberOfLogicalCores| The number of processors

gum. getNumberOf Threads The number of threads used by
default by pyAgrum objects
gum.setNumber0fThreads Sets the number of threads

used by default
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Using the pyAgrum-wide APIl —an example

import pyAgrum as gum
print ("Nb procs =", gum.getMaxNumberOfThreads())

# Default number of threads for all pyAgrum objects
print ("Nb used =", gum.getNumberOfThreads())

# Changing this default number
gum.setNumberOfThreads (10)

=T = N T O R R
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Using the pyAgrum-wide APIl —an example

import pyAgrum as gum
print ("Nb procs =", gum.getMaxNumberOfThreads())

# Default number of threads for all pyAgrum objects
print ("Nb used =", gum.getNumberOfThreads())

# Changing this default number
gum.setNumberOfThreads (10)

=T = N T O R R

1w # Default number of threads for all pyAgrum objects
12 print ("Nb used =", gum.getNumberOfThreads())

Nb procs = 64
Nb used = 64
Nb used 10
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Overriding the pyAgrum multithreading setting

» Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of
threads used by obj
obj.setNumberOfThreads changes the number of threads
used by obj
obj.isGumNumberOfThreadsOverriden| indicates whether obj uses its
own number or that of pyAgrum
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1
2 learner = gum.BNLearner ("data/alarm.csv")

3
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4

learner.isGumNumberOfThreadsOverriden ())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

11/27



Using the object APl — an example

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

print ("pyAgrum threads =", gum.getNumberOfThreads())
print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

# changing the number of threads only for the learner
learner.setNumberOfThreads (10)

print ("pyAgrum threads =", gum.getNumberOfThreads())
print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

11/27



Using the object APl — an example

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

print ("pyAgrum threads =", gum.getNumberOfThreads())
print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

# changing the number of threads only for the learner

10 learner.setNumberOfThreads (10)
11 print ("pyAgrum threads =", gum.getNumberOfThreads())
12 print ("Learner threads =", learner.getNumberOfThreads())

13 print ("Learner override =",

14 learner.isGumNumberOfThreadsOverriden ())
pyAgrum threads = 64 pyAgrum threads = 64
Learner threads = 64 Learner threads = 10
Learner override = False Learner override = True

11/27



Using the object APl — an example
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Toward an optimal choice of the number of threads

QXDDifferent situations :

» Performing just one learning :
use pyAgrum number of threads

» Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

» Performing a small amount K of learnings :
let nb processors ~ A x B, with K multiple of A

perform A experiments in parallel
use B thread per BNlearner
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Next multithreading steps. ..

» Allow Databases to be column-wise instead of row-wise

= improved cacheline use
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New exact inference architecture (2/2)

u Create a junction tree
u Create a schedule from the JT
u Execute the schedule

» Used by LazyPropagation and Shafer-Shenoy

» 2 schedulers :
» Sequential scheduler

» Parallel scheduler

» 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 10°
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LazyPropagation’s inferences on Munin4
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Toward an optimal use of schedulers (1/2)

» Synchronization mechanisms :
» Mutexes / locks
» Condition variables
» Atomics

... but there is still an overhead.

» Experiments on large BNs :
» Major time reduction from 1 to 4-6 threads
» More limited gain above 6 threads

» Explanation : clique sizes imbalanced
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Toward an optimal use of schedulers (2/2)

o
?Different situations for large BNs :

» Performing just one inference :
parallellize with pyAgrum number of threads

» Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

» Performing a small amount K of inferences :
perform K /4 experiments in parallel
use 4 threads per LazyPropagation instance
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Schedules and their operators

Objects contained into schedules :

» ScheduleMultiDim : abstraction of potentials

» ScheduleBinaryCombination : T®@ T +— T

» ScheduleProjection : T vi— T

» ScheduleDeletion : remove a ScheduleMultiDim from memory

» ScheduleStorage : store a ScheduleMultiDim into a container

= very general-purpose
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Next multithreading steps. ..

» Expose numberOfOperations and setMaxMemory to pyAgrum
» Reduce the overhead of using schedulers

» Add schedulers parallelizing both operators and operations

— requires splitting Potential operators computations

» Add a scheduler exploiting GPU

— requires ScheduleOperator for changing the order of
variables in potentials
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» or the compiler does not support openMP
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openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used except if :
» either the user compiled aGrUM with --threads=st1 option

» or the compiler does not support openMP
» Parallelism achieved by using ThreadExecutor instances

» Advantages :
» Multithreaded objects are agnostic
» Exceptions can be catched

» When one thread : no overhead
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ThreadExecutors — an example

auto func = [] (const std::size_t this_thread,
const std::size_t nb_threads) -> void {
std::cout << "thread #" << this_thread << std::endl;
}i

try {
gum: : ThreadExecutor: :execute (5, func);
} catch(...) {

std::cout << "Exception catched" << std::endl;

}
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— Exceptions can be catched in Python!
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ThreadExecutors — another example

auto func = [] (const std::size_t this_thread,
const std::size t nb_threads,
int nb,
const std::string& str) -> wvoid {
std::cout << str << nb << " #"

<< this_thread << std::endl;
}i

gum: : ThreadExecutor: :execute (5, func, 8, "thread ");
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— Functions can have as many parameters as wished

Only constraint : first 2 params : this_thread and nb_threads
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Conclusion

» Parallelism speeds-up learning and inference computations




Conclusion

» Parallelism speeds-up learning and inference computations

» Many things to do yet for inferences

» in particular, check const objects. ..




Conclusion

» Parallelism speeds-up learning and inference computations

» Many things to do yet for inferences

» in particular, check const objects. ..

» Reduce schedules’ creations overhead




Conclusion

» Parallelism speeds-up learning and inference computations

» Many things to do yet for inferences
» in particular, check const objects. ..

» Reduce schedules’ creations overhead

» inferences over GPU




