
FAST AND FURIOUS THINGS IN AGRUM/PYAGRUM

CHRISTOPHE GONZALES

LIS – AIX-MARSEILLE UNIVERSITÉ

Outline

Parallelization in Learning algorithms

Parallelization in Inferences

aGrUM’s multithreading facility

2/27

Outline

Parallelization in Learning algorithms

Parallelization in Inferences

aGrUM’s multithreading facility

2/27

Outline

Parallelization in Learning algorithms

Parallelization in Inferences

aGrUM’s multithreading facility

2/27

BN structure learning : Greedy Hill Climbing

1 Gbest ← initial graph (empty)
2 scbest ← Score(Gbest)
3

4 repeat
5 found← false
6 foreach G′ ∈ neighborhood of Gbest do
7 sc′ ← Score(G′)
8 if sc′ > scbest then
9 Gbest ← G′, scbest ← sc′

10 found← true

11 until found = false;
12

13 return Gbest

▶ 2 parallelization opportunities :

▶ One thread per graph G′

3/27

BN structure learning : Greedy Hill Climbing

1 Gbest ← initial graph (empty)
2 scbest ← Score(Gbest)
3

4 repeat
5 found← false
6 foreach G′ ∈ neighborhood of Gbest do
7 sc′ ← Score(G′)
8 if sc′ > scbest then
9 Gbest ← G′, scbest ← sc′

10 found← true

11 until found = false;
12

13 return Gbest

▶ 2 parallelization opportunities :

▶ One thread per graph G′

3/27

BN structure learning : Greedy Hill Climbing

1 Gbest ← initial graph (empty)
2 scbest ← Score(Gbest)
3

4 repeat
5 found← false
6 foreach G′ ∈ neighborhood of Gbest do
7 sc′ ← Score(G′)
8 if sc′ > scbest then
9 Gbest ← G′, scbest ← sc′

10 found← true

11 until found = false;
12

13 return Gbest

▶ 2 parallelization opportunities :

▶ One thread per graph G′

3/27

BN structure learning : Greedy Hill Climbing

1 Gbest ← initial graph (empty)
2 scbest ← Score(Gbest)
3

4 repeat
5 found← false
6 foreach G′ ∈ neighborhood of Gbest do
7 sc′ ← Score(G′)
8 if sc′ > scbest then
9 Gbest ← G′, scbest ← sc′

10 found← true

11 until found = false;
12

13 return Gbest

▶ 2 parallelization opportunities :

▶ One thread per graph G′

▶ Several threads for each score

3/27

BN structure learning : Greedy Hill Climbing

1 Gbest ← initial graph (empty)
2 scbest ← Score(Gbest)
3

4 repeat
5 found← false
6 foreach G′ ∈ neighborhood of Gbest do
7 sc′ ← Score(G′)
8 if sc′ > scbest then
9 Gbest ← G′, scbest ← sc′

10 found← true

11 until found = false;
12

13 return Gbest

▶ 2 parallelization opportunities :

▶ One thread per graph G′

▶ Several threads for each score

3/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Parallelizing the scores

The BD score

ScoreBD(Xi |Pa(Xi),D) =

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

4/27

Alarm : learning structure with 10K records

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

Number of threads

Le
ar

ni
ng

tim
e

▶ aGrUM’s rule : Number of records per thread ≥ 512

5/27

Alarm : learning structure with 10K records

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

Number of threads

Le
ar

ni
ng

tim
e

▶ aGrUM’s rule : Number of records per thread ≥ 512

5/27

Alarm : learning structure with 200K records

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Number of threads

Le
ar

ni
ng

tim
e

6/27

Number of threads in pyAgrum : the rationale

aGrUM’s rules :

1 pyAgrum manages a ≪ package-wide ≫ number of threads

=⇒ by default, same number for all multithreaded objects

2 Objects can override this number

7/27

Number of threads in pyAgrum : the rationale

aGrUM’s rules :

1 pyAgrum manages a ≪ package-wide ≫ number of threads

=⇒ by default, same number for all multithreaded objects

2 Objects can override this number

7/27

pyAgrum’s Package-wide API

import pyAgrum as gum

▶ Package-wide functions :

function meaning
gum.getMaxNumberOfThreads The number of processors of

the computer

gum.getNumberOfLogicalCores The number of processors
gum.getNumberOfThreads The number of threads used by

default by pyAgrum objects
gum.setNumberOfThreads Sets the number of threads

used by default

8/27

pyAgrum’s Package-wide API

import pyAgrum as gum

▶ Package-wide functions :

function meaning
gum.getMaxNumberOfThreads The number of processors of

the computer

gum.getNumberOfLogicalCores The number of processors
gum.getNumberOfThreads The number of threads used by

default by pyAgrum objects
gum.setNumberOfThreads Sets the number of threads

used by default

8/27

pyAgrum’s Package-wide API

import pyAgrum as gum

▶ Package-wide functions :

function meaning
gum.getMaxNumberOfThreads The number of processors of

the computer
gum.getNumberOfLogicalCores The number of processors

gum.getNumberOfThreads The number of threads used by
default by pyAgrum objects

gum.setNumberOfThreads Sets the number of threads
used by default

8/27

pyAgrum’s Package-wide API

import pyAgrum as gum

▶ Package-wide functions :

function meaning
gum.getMaxNumberOfThreads The number of processors of

the computer
gum.getNumberOfLogicalCores The number of processors
gum.getNumberOfThreads The number of threads used by

default by pyAgrum objects

gum.setNumberOfThreads Sets the number of threads
used by default

8/27

pyAgrum’s Package-wide API

import pyAgrum as gum

▶ Package-wide functions :

function meaning
gum.getMaxNumberOfThreads The number of processors of

the computer
gum.getNumberOfLogicalCores The number of processors
gum.getNumberOfThreads The number of threads used by

default by pyAgrum objects
gum.setNumberOfThreads Sets the number of threads

used by default

8/27

Using the pyAgrum-wide API – an example

1 import pyAgrum as gum
2

3 print("Nb procs =", gum.getMaxNumberOfThreads())

4

5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
7

8 # Changing this default number
9 gum.setNumberOfThreads(10)

10

11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())

Nb procs = 64
Nb used = 64
Nb used = 10

9/27

Using the pyAgrum-wide API – an example

1 import pyAgrum as gum
2

3 print("Nb procs =", gum.getMaxNumberOfThreads())

4

5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
7

8 # Changing this default number
9 gum.setNumberOfThreads(10)

10

11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())

Nb procs = 64

Nb used = 64
Nb used = 10

9/27

Using the pyAgrum-wide API – an example

1 import pyAgrum as gum
2

3 print("Nb procs =", gum.getMaxNumberOfThreads())
4

5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())

7

8 # Changing this default number
9 gum.setNumberOfThreads(10)

10

11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())

Nb procs = 64

Nb used = 64
Nb used = 10

9/27

Using the pyAgrum-wide API – an example

1 import pyAgrum as gum
2

3 print("Nb procs =", gum.getMaxNumberOfThreads())
4

5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())

7

8 # Changing this default number
9 gum.setNumberOfThreads(10)

10

11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())

Nb procs = 64
Nb used = 64

Nb used = 10

9/27

Using the pyAgrum-wide API – an example

1 import pyAgrum as gum
2

3 print("Nb procs =", gum.getMaxNumberOfThreads())
4

5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
7

8 # Changing this default number
9 gum.setNumberOfThreads(10)

10

11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())

Nb procs = 64
Nb used = 64

Nb used = 10

9/27

Using the pyAgrum-wide API – an example

1 import pyAgrum as gum
2

3 print("Nb procs =", gum.getMaxNumberOfThreads())
4

5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
7

8 # Changing this default number
9 gum.setNumberOfThreads(10)

10

11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())

Nb procs = 64
Nb used = 64
Nb used = 10

9/27

Overriding the pyAgrum multithreading setting

▶ Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of

threads used by obj

obj.setNumberOfThreads changes the number of threads
used by obj

obj.isGumNumberOfThreadsOverriden indicates whether obj uses its
own number or that of pyAgrum

10/27

Overriding the pyAgrum multithreading setting

▶ Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of

threads used by obj

obj.setNumberOfThreads changes the number of threads
used by obj

obj.isGumNumberOfThreadsOverriden indicates whether obj uses its
own number or that of pyAgrum

10/27

Overriding the pyAgrum multithreading setting

▶ Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of

threads used by obj

obj.setNumberOfThreads changes the number of threads
used by obj

obj.isGumNumberOfThreadsOverriden indicates whether obj uses its
own number or that of pyAgrum

10/27

Overriding the pyAgrum multithreading setting

▶ Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of

threads used by obj

obj.setNumberOfThreads changes the number of threads
used by obj

obj.isGumNumberOfThreadsOverriden indicates whether obj uses its
own number or that of pyAgrum

10/27

Using the object API – an example
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =",
7 learner.isGumNumberOfThreadsOverriden())

8
9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =",
14 learner.isGumNumberOfThreadsOverriden())
15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19 " Learner override =",
20 learner.isGumNumberOfThreadsOverriden())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

11/27

Using the object API – an example
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =",
7 learner.isGumNumberOfThreadsOverriden())

8
9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =",
14 learner.isGumNumberOfThreadsOverriden())
15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19 " Learner override =",
20 learner.isGumNumberOfThreadsOverriden())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

11/27

Using the object API – an example
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =",
7 learner.isGumNumberOfThreadsOverriden())
8
9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =",
14 learner.isGumNumberOfThreadsOverriden())

15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19 " Learner override =",
20 learner.isGumNumberOfThreadsOverriden())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

11/27

Using the object API – an example
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =",
7 learner.isGumNumberOfThreadsOverriden())
8
9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =",
14 learner.isGumNumberOfThreadsOverriden())

15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19 " Learner override =",
20 learner.isGumNumberOfThreadsOverriden())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

11/27

Using the object API – an example
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =",
7 learner.isGumNumberOfThreadsOverriden())
8
9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =",
14 learner.isGumNumberOfThreadsOverriden())
15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19 " Learner override =",
20 learner.isGumNumberOfThreadsOverriden())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

11/27

Using the object API – an example
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =",
7 learner.isGumNumberOfThreadsOverriden())
8
9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =",
14 learner.isGumNumberOfThreadsOverriden())
15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19 " Learner override =",
20 learner.isGumNumberOfThreadsOverriden())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

11/27

Toward an optimal choice of the number of threads

Different situations :

▶ Performing just one learning :
use pyAgrum number of threads

▶ Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

▶ Performing a small amount K of learnings :
let nb processors ≈ A× B, with K multiple of A
perform A experiments in parallel
use B thread per BNlearner

12/27

Toward an optimal choice of the number of threads

Different situations :

▶ Performing just one learning :
use pyAgrum number of threads

▶ Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

▶ Performing a small amount K of learnings :
let nb processors ≈ A× B, with K multiple of A
perform A experiments in parallel
use B thread per BNlearner

12/27

Toward an optimal choice of the number of threads

Different situations :

▶ Performing just one learning :
use pyAgrum number of threads

▶ Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

▶ Performing a small amount K of learnings :
let nb processors ≈ A× B, with K multiple of A
perform A experiments in parallel
use B thread per BNlearner

12/27

Next multithreading steps. . .

▶ Allow Databases to be column-wise instead of row-wise

=⇒ improved cacheline use

13/27

Parallelization in Inferences

14/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+

P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+

P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+

P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (1/2)

BCE
B

C

AB

CD
E EF

P(A|B),P(B)

P(C|D),P(D)

P(E |B,C) P(F |E)

1 P(A,B) = P(A|B)× P(B)

2 P(B) =
∑

A P(A,B)

3 P(C,D) = P(C|D)× P(D)

4 P(C) =
∑

D P(C,D)

5 P(B,C,E) = P(E |B,C)× P(B)× P(C)

6 P(E) =
∑

B,C P(B,C,E)

7 P(E ,F) = P(F |E)× P(E)

8 P(F) =
∑

E P(E ,F)

P(A|B)

×

P(B)

+

P(D)

×

P(C|D)

+P(E |B,C)

×

+

×

P(F |E)

+

Schedule

15/27

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

▶ Used by LazyPropagation and Shafer-Shenoy

▶ 2 schedulers :

▶ Sequential scheduler

▶ Parallel scheduler

▶ 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 106

16/27

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

▶ Used by LazyPropagation and Shafer-Shenoy

▶ 2 schedulers :

▶ Sequential scheduler

▶ Parallel scheduler

▶ 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 106

16/27

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

▶ Used by LazyPropagation and Shafer-Shenoy

▶ 2 schedulers :

▶ Sequential scheduler

▶ Parallel scheduler

▶ 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 106

16/27

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

▶ Used by LazyPropagation and Shafer-Shenoy

▶ 2 schedulers :

▶ Sequential scheduler

▶ Parallel scheduler

▶ 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 106

16/27

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

▶ Used by LazyPropagation and Shafer-Shenoy

▶ 2 schedulers :

▶ Sequential scheduler

▶ Parallel scheduler

▶ 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 106

16/27

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

▶ Used by LazyPropagation and Shafer-Shenoy

▶ 2 schedulers :

▶ Sequential scheduler

▶ Parallel scheduler

▶ 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 106

16/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+

P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+

P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+

P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+

P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

Parallel scheduler – an example

P(A|B)

×

P(B)

P(A|B)

×

P(B)

+

+

P(D)

×

P(C|D)

P(D)

×

P(C|D)

+

+

P(E |B,C)

×

P(E |B,C)

×

+

+

×

P(F |E)

×

P(F |E)

+

+

17/27

LazyPropagation’s inferences on Munin4

0 5 10 15 20 25 30 35

0.4

0.6

0.8

Number of threads

In
fe

re
nc

e
tim

e

18/27

Toward an optimal use of schedulers (1/2)

▶ Synchronization mechanisms :

▶ Mutexes / locks

▶ Condition variables

▶ Atomics

. . . but there is still an overhead.

▶ Experiments on large BNs :

▶ Major time reduction from 1 to 4-6 threads

▶ More limited gain above 6 threads

▶ Explanation : clique sizes imbalanced

19/27

Toward an optimal use of schedulers (1/2)

▶ Synchronization mechanisms :

▶ Mutexes / locks

▶ Condition variables

▶ Atomics

. . . but there is still an overhead.

▶ Experiments on large BNs :

▶ Major time reduction from 1 to 4-6 threads

▶ More limited gain above 6 threads

▶ Explanation : clique sizes imbalanced

19/27

Toward an optimal use of schedulers (1/2)

▶ Synchronization mechanisms :

▶ Mutexes / locks

▶ Condition variables

▶ Atomics

. . . but there is still an overhead.

▶ Experiments on large BNs :

▶ Major time reduction from 1 to 4-6 threads

▶ More limited gain above 6 threads

▶ Explanation : clique sizes imbalanced

19/27

Toward an optimal use of schedulers (1/2)

▶ Synchronization mechanisms :

▶ Mutexes / locks

▶ Condition variables

▶ Atomics

. . . but there is still an overhead.

▶ Experiments on large BNs :

▶ Major time reduction from 1 to 4-6 threads

▶ More limited gain above 6 threads

▶ Explanation : clique sizes imbalanced

19/27

Toward an optimal use of schedulers (1/2)

▶ Synchronization mechanisms :

▶ Mutexes / locks

▶ Condition variables

▶ Atomics

. . . but there is still an overhead.

▶ Experiments on large BNs :

▶ Major time reduction from 1 to 4-6 threads

▶ More limited gain above 6 threads

▶ Explanation : clique sizes imbalanced

19/27

Toward an optimal use of schedulers (2/2)

Different situations for large BNs :

▶ Performing just one inference :
parallellize with pyAgrum number of threads

▶ Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

▶ Performing a small amount K of inferences :
perform K/4 experiments in parallel
use 4 threads per LazyPropagation instance

20/27

Toward an optimal use of schedulers (2/2)

Different situations for large BNs :

▶ Performing just one inference :
parallellize with pyAgrum number of threads

▶ Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

▶ Performing a small amount K of inferences :
perform K/4 experiments in parallel
use 4 threads per LazyPropagation instance

20/27

Toward an optimal use of schedulers (2/2)

Different situations for large BNs :

▶ Performing just one inference :
parallellize with pyAgrum number of threads

▶ Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

▶ Performing a small amount K of inferences :
perform K/4 experiments in parallel
use 4 threads per LazyPropagation instance

20/27

Schedules and their operators

Objects contained into schedules :

▶ ScheduleMultiDim : abstraction of potentials

▶ ScheduleBinaryCombination : T ⊗ T 7→ T

▶ ScheduleProjection : T ⇓ v 7→ T

▶ ScheduleDeletion : remove a ScheduleMultiDim from memory

▶ ScheduleStorage : store a ScheduleMultiDim into a container

=⇒ very general-purpose

21/27

Schedules and their operators

Objects contained into schedules :

▶ ScheduleMultiDim : abstraction of potentials

▶ ScheduleBinaryCombination : T ⊗ T 7→ T

▶ ScheduleProjection : T ⇓ v 7→ T

▶ ScheduleDeletion : remove a ScheduleMultiDim from memory

▶ ScheduleStorage : store a ScheduleMultiDim into a container

=⇒ very general-purpose

21/27

Schedules and their operators

Objects contained into schedules :

▶ ScheduleMultiDim : abstraction of potentials

▶ ScheduleBinaryCombination : T ⊗ T 7→ T

▶ ScheduleProjection : T ⇓ v 7→ T

▶ ScheduleDeletion : remove a ScheduleMultiDim from memory

▶ ScheduleStorage : store a ScheduleMultiDim into a container

=⇒ very general-purpose

21/27

Schedules and their operators

Objects contained into schedules :

▶ ScheduleMultiDim : abstraction of potentials

▶ ScheduleBinaryCombination : T ⊗ T 7→ T

▶ ScheduleProjection : T ⇓ v 7→ T

▶ ScheduleDeletion : remove a ScheduleMultiDim from memory

▶ ScheduleStorage : store a ScheduleMultiDim into a container

=⇒ very general-purpose

21/27

Next multithreading steps. . .

▶ Expose numberOfOperations and setMaxMemory to pyAgrum

▶ Reduce the overhead of using schedulers

▶ Add schedulers parallelizing both operators and operations

=⇒ requires splitting Potential operators computations

▶ Add a scheduler exploiting GPU

=⇒ requires ScheduleOperator for changing the order of
variables in potentials

22/27

Next multithreading steps. . .

▶ Expose numberOfOperations and setMaxMemory to pyAgrum

▶ Reduce the overhead of using schedulers

▶ Add schedulers parallelizing both operators and operations

=⇒ requires splitting Potential operators computations

▶ Add a scheduler exploiting GPU

=⇒ requires ScheduleOperator for changing the order of
variables in potentials

22/27

Next multithreading steps. . .

▶ Expose numberOfOperations and setMaxMemory to pyAgrum

▶ Reduce the overhead of using schedulers

▶ Add schedulers parallelizing both operators and operations

=⇒ requires splitting Potential operators computations

▶ Add a scheduler exploiting GPU

=⇒ requires ScheduleOperator for changing the order of
variables in potentials

22/27

Next multithreading steps. . .

▶ Expose numberOfOperations and setMaxMemory to pyAgrum

▶ Reduce the overhead of using schedulers

▶ Add schedulers parallelizing both operators and operations

=⇒ requires splitting Potential operators computations

▶ Add a scheduler exploiting GPU

=⇒ requires ScheduleOperator for changing the order of
variables in potentials

22/27

aGrUM’s multithreading facility

23/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used

except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

openMP vs. STL threads

▶ Multithreaded objects support both openMP and STL threads

▶ By default, openMP is used except if :

▶ either the user compiled aGrUM with --threads=stl option

▶ or the compiler does not support openMP

▶ Parallelism achieved by using ThreadExecutor instances

▶ Advantages :

▶ Multithreaded objects are agnostic

▶ Exceptions can be catched

▶ When one thread : no overhead

24/27

ThreadExecutors – an example

auto func = [](const std::size_t this_thread,
const std::size_t nb_threads) -> void {

std::cout << "thread #" << this_thread << std::endl;
};

try {
gum::ThreadExecutor::execute(5, func);

} catch(...) {
std::cout << "Exception catched" << std::endl;

}

thread #0
thread #4
thread #3
thread #thread #2
1

=⇒ Exceptions can be catched in Python !

25/27

ThreadExecutors – an example

auto func = [](const std::size_t this_thread,
const std::size_t nb_threads) -> void {

std::cout << "thread #" << this_thread << std::endl;
};

try {
gum::ThreadExecutor::execute(5, func);

} catch(...) {
std::cout << "Exception catched" << std::endl;

}

thread #0
thread #4
thread #3
thread #thread #2
1

=⇒ Exceptions can be catched in Python !

25/27

ThreadExecutors – an example

auto func = [](const std::size_t this_thread,
const std::size_t nb_threads) -> void {

std::cout << "thread #" << this_thread << std::endl;
};

try {
gum::ThreadExecutor::execute(5, func);

} catch(...) {
std::cout << "Exception catched" << std::endl;

}

thread #0
thread #4
thread #3
thread #thread #2
1

=⇒ Exceptions can be catched in Python !

25/27

ThreadExecutors – another example

auto func = [](const std::size_t this_thread,
const std::size_t nb_threads,
int nb,
const std::string& str) -> void {

std::cout << str << nb << " #"
<< this_thread << std::endl;

};

gum::ThreadExecutor::execute(5, func, 8, "thread ");

thread 8 #thread 0thread 8 #4thread 8 #2
8
thread 8 #3
#1

=⇒ Functions can have as many parameters as wished

Only constraint : first 2 params : this thread and nb threads

26/27

ThreadExecutors – another example

auto func = [](const std::size_t this_thread,
const std::size_t nb_threads,
int nb,
const std::string& str) -> void {

std::cout << str << nb << " #"
<< this_thread << std::endl;

};

gum::ThreadExecutor::execute(5, func, 8, "thread ");

thread 8 #thread 0thread 8 #4thread 8 #2
8
thread 8 #3
#1

=⇒ Functions can have as many parameters as wished

Only constraint : first 2 params : this thread and nb threads

26/27

ThreadExecutors – another example

auto func = [](const std::size_t this_thread,
const std::size_t nb_threads,
int nb,
const std::string& str) -> void {

std::cout << str << nb << " #"
<< this_thread << std::endl;

};

gum::ThreadExecutor::execute(5, func, 8, "thread ");

thread 8 #thread 0thread 8 #4thread 8 #2
8
thread 8 #3
#1

=⇒ Functions can have as many parameters as wished

Only constraint : first 2 params : this thread and nb threads

26/27

Conclusion

▶ Parallelism speeds-up learning and inference computations

▶ Many things to do yet for inferences

▶ in particular, check const objects. . .

▶ Reduce schedules’ creations overhead

▶ inferences over GPU

27/27

Conclusion

▶ Parallelism speeds-up learning and inference computations

▶ Many things to do yet for inferences

▶ in particular, check const objects. . .

▶ Reduce schedules’ creations overhead

▶ inferences over GPU

27/27

Conclusion

▶ Parallelism speeds-up learning and inference computations

▶ Many things to do yet for inferences

▶ in particular, check const objects. . .

▶ Reduce schedules’ creations overhead

▶ inferences over GPU

27/27

Conclusion

▶ Parallelism speeds-up learning and inference computations

▶ Many things to do yet for inferences

▶ in particular, check const objects. . .

▶ Reduce schedules’ creations overhead

▶ inferences over GPU

27/27

