FAST AND FURIOUS THINGS IN AGRUM/PYAGRUM
CHRISTOPHE GONZALES

LIS — AIX-MARSEILLE UNIVERSITE

L:5 Aix+Marseille
universite

' Parallelization in Learning algorithms

Parallelization in Inferences

' Parallelization in Learning algorithms

Parallelization in Learning algorithms

Parallelization in Inferences

aGrUM’s multithreading facility

BN structure learning : Greedy Hill Climbing

1 Gpest < initial graph (empty)
2 SCpest < Score(Gpest)
3
4 repeat
5 found « false
6 foreach G’ € neighborhood of Gpest dO
7 sc’ «+ Score(g")
8 if s’ > scpest then
9 L Gbest G'» SCpest « SC’
10 found « true

11 until found = false;
12
13 return Gyt

3/27

BN structure learning : Greedy Hill Climbing

Grest < initial graph (empty)
SCpest < SCOre(Gpest)

repeat
found « false
foreach G’ € neighborhood of Gpest dO
sc’ «+ Score(g")
if s’ > scpest then
L Gbest < G', SChest < SC’
found <« true

© O N O G A WN =

-
o

11 until found = false; » 2 parallelization opportunities :
12

13 return Gyt

3/27

BN structure learning : Greedy Hill Climbing

Grest < initial graph (empty)
SCpest < SCOre(Gpest)

repeat
found « false
foreach G’ € neighborhood of Gpest dO
sc’ «+ Score(g")
if s’ > scpest then
L Gbest < G', SChest < SC’
found <« true

© O N O G A WN =

-
o

11 until found = false; » 2 parallelization opportunities :
12

» One thread per graph G’
13 return Gyt per graph G

3/27

BN structure learning : Greedy Hill Climbing

Grest < initial graph (empty)
SCpest < SCOre(Gpest)

repeat
found « false
foreach G’ € neighborhood of Gpest dO
sc’ «+ Score(g")
if s’ > scpest then
L Gpest < G', SCpest < SC’
found <« true

© O N O G A WN =

-
o

11 until found = false; » 2 parallelization opportunities :
12

/
13 FetUrn Gpos » One thread per graph G

» Several threads for each score

3/27

BN structure learning : Greedy Hill Climbing

Grest < initial graph (empty)
SCpest < SCOre(Gpest)

repeat
found « false
foreach G’ € neighborhood of Gpest dO
sc’ «+ Score(g")
if s’ > scpest then
L Gpest < G', SCpest < SC’
found <« true

© O N O G A WN =

-
o

11 until found = false; » 2 parallelization opportunities :
12

/
13 FetUrn Gpos » One thread per graph G

» Several threads for each score

3/27

Parallelizing the scores
The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

Parallelizing the scores
The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

Parallelizing the scores

The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

&

Parallelizing the scores

The BD score

7
au) d r(N,'jk-f-Oéijk)

S Xi|Pa(X;),D) =

coregp(Xi|Pa(X;),D) = Herj)H (i)

+ aji

Parallelizing the scores

The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

&

Parallelizing the scores

The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

&

Parallelizing the scores

The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

&
—&—& &
&

Parallelizing the scores

The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

_
@
_

&

@E@@

Parallelizing the scores

The BD score

T (Nj +)

Scorepp(Xi|Pa(X;),D) = H r N,joij)a,j) H (i)

_
&—@—&
_

@

%

learning structure with 10K records

04} a

Learning time

0.1} .

| | | | | | |
0 5 10 15 20 25 30 35
Number of threads

5/27

learning structure with 10K records

04} :

Learning time

0.1} .

| | | | | | |
0 5 10 15 20 25 30 35
Number of threads

» aGrUM’s rule : Number of records per thread > 512

5/27

learning structure with 200K records

—_ [N N
o (&) o (6]
T T T T
| | | |

Learning time

(6)]
T
|

oL | | | | | | | N
0 5 10 15 20 25 30 35
Number of threads

6/27

Number of threads in pyAgrum : the rationale

g aGrUM’s rules :

@ pyAgrum manages a < package-wide > number of threads

= by default, same number for all multithreaded objects

Number of threads in pyAgrum : the rationale

g aGrUM’s rules :

@ pyAgrum manages a < package-wide > number of threads
= by default, same number for all multithreaded objects

@ Objects can override this number

pyAgrum’s Package-wide API

import pyAgrum as gum

» Package-wide functions :

function meaning

gum.getMaxNumberOfThreads | The number of processors of
the computer

pyAgrum’s Package-wide API

import pyAgrum as gum

» Package-wide functions :

function meaning

gum.getMaxNumberOfThreads | The number of processors of
the computer

pyAgrum’s Package-wide API

import pyAgrum as gum

» Package-wide functions :

function meaning

gum.getMaxNumberOfThreads | The number of processors of
the computer
gum. getNumberOfLogicalCores| The number of processors

pyAgrum’s Package-wide API

import pyAgrum as gum

» Package-wide functions :

function meaning

gum.getMaxNumberOfThreads | The number of processors of
the computer

gum. getNumberOfLogicalCores| The number of processors
gum. getNumberOf Threads The number of threads used by
default by pyAgrum objects

pyAgrum’s Package-wide API

import pyAgrum as gum

» Package-wide functions :

function meaning
gum.getMaxNumberOfThreads | The number of processors of
the computer
gum. getNumberOfLogicalCores| The number of processors

gum. getNumberOf Threads The number of threads used by
default by pyAgrum objects
gum.setNumber0fThreads Sets the number of threads

used by default

8/27

Using the pyAgrum-wide APIl —an example

1 import pyAgrum as gum
2
3 print ("Nb procs =", gum.getMaxNumberOfThreads ())

Using the pyAgrum-wide APIl —an example

1 import pyAgrum as gum
2
3 print ("Nb procs =", gum.getMaxNumberOfThreads ())

Nb procs = 64

Using the pyAgrum-wide APIl —an example

[Y T N

import pyAgrum as gum
print ("Nb procs =", gum.getMaxNumberOfThreads())

Default number of threads for all pyAgrum objects
print ("Nb used =", gum.getNumberOfThreads())

Nb procs = 64

Using the pyAgrum-wide APIl —an example

import pyAgrum as gum
print ("Nb procs =", gum.getMaxNumberOfThreads())

Default number of threads for all pyAgrum objects
print ("Nb used =", gum.getNumberOfThreads())

[Y T N

Nb procs = 64
Nb used = 64

9/27

Using the pyAgrum-wide APIl —an example

import pyAgrum as gum
print ("Nb procs =", gum.getMaxNumberOfThreads())

Default number of threads for all pyAgrum objects
print ("Nb used =", gum.getNumberOfThreads())

Changing this default number
gum.setNumberOfThreads (10)

=T = N T O R R

Nb procs = 64
Nb used = 64

9/27

Using the pyAgrum-wide APIl —an example

import pyAgrum as gum
print ("Nb procs =", gum.getMaxNumberOfThreads())

Default number of threads for all pyAgrum objects
print ("Nb used =", gum.getNumberOfThreads())

Changing this default number
gum.setNumberOfThreads (10)

=T = N T O R R

1w # Default number of threads for all pyAgrum objects
12 print ("Nb used =", gum.getNumberOfThreads())

Nb procs = 64
Nb used = 64
Nb used 10

9/27

Overriding the pyAgrum multithreading setting

» Object overriding methods :

Overriding the pyAgrum multithreading setting

» Object overriding methods :

function

meaning |

obj.getNumberOfThreads

returns the current number of
threads used by obj

Overriding the pyAgrum multithreading setting

» Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of
threads used by obj
obj.setNumberOfThreads changes the number of threads
used by obj

Overriding the pyAgrum multithreading setting

» Object overriding methods :

function meaning
obj.getNumberOfThreads returns the current number of
threads used by obj
obj.setNumberOfThreads changes the number of threads
used by obj
obj.isGumNumberOfThreadsOverriden| indicates whether obj uses its
own number or that of pyAgrum

Using the object APl — an example

B I Y N T N

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

print ("pyAgrum threads =", gum.getNumberOfThreads())

print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

Using the object APl — an example

import pyAgrum as gum

1
2 learner = gum.BNLearner ("data/alarm.csv")

3

4 print ("pyAgrum threads =", gum.getNumberOfThreads())

5 print ("Learner threads =", learner.getNumberOfThreads ())
6 print ("Learner override =",

4

learner.isGumNumberOfThreadsOverriden ())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

11/27

Using the object APl — an example

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

print ("pyAgrum threads =", gum.getNumberOfThreads())
print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

changing the number of threads only for the learner
learner.setNumberOfThreads (10)

print ("pyAgrum threads =", gum.getNumberOfThreads())
print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

pyAgrum threads = 64
Learner threads = 64
Learner override = False

11/27

Using the object APl — an example

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

print ("pyAgrum threads =", gum.getNumberOfThreads())
print ("Learner threads =", learner.getNumberOfThreads())

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

changing the number of threads only for the learner

10 learner.setNumberOfThreads (10)
11 print ("pyAgrum threads =", gum.getNumberOfThreads())
12 print ("Learner threads =", learner.getNumberOfThreads())

13 print ("Learner override =",

14 learner.isGumNumberOfThreadsOverriden ())
pyAgrum threads = 64 pyAgrum threads = 64
Learner threads = 64 Learner threads = 10
Learner override = False Learner override = True

11/27

Using the object APl — an example

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

1
2

3

4 print ("pyAgrum threads =", gum.getNumberOfThreads())

5 print ("Learner threads =", learner.getNumberOfThreads ())
6 print ("Learner override =",

7 learner.isGumNumberOfThreadsOverriden ())

8

9 # changing the number of threads only for the learner

10 learner.setNumberOfThreads (10)
11 print ("pyAgrum threads =", gum.getNumberOfThreads())

12 print ("Learner threads =", learner.getNumberOfThreads())
13 print ("Learner override =",
14 learner.isGumNumberOfThreadsOverriden ())

16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads (0) # 0 = package-wide

18 print ("Learner threads =", learner.getNumberOfThreads (),

19 " Learner override =",

20 learner.isGumNumberOfThreadsOverriden ())
pyAgrum threads = 64 pyAgrum threads = 64
Learner threads = 64 Learner threads = 10
Learner override = False Learner override = True

11/2

Using the object APl — an example

import pyAgrum as gum
learner = gum.BNLearner ("data/alarm.csv")

1
2
3
4 print ("pyAgrum threads =", gum.getNumberOfThreads())

5 print ("Learner threads =", learner.getNumberOfThreads ())
6

7

8

9

print ("Learner override =",
learner.isGumNumberOfThreadsOverriden ())

changing the number of threads only for the learner

10 learner.setNumberOfThreads (10)
11 print ("pyAgrum threads =", gum.getNumberOfThreads())

12 print ("Learner threads =", learner.getNumberOfThreads())
13 print ("Learner override =",
14 learner.isGumNumberOfThreadsOverriden ())

16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads (0) # 0 = package-wide

18 print ("Learner threads =", learner.getNumberOfThreads (),

19 " Learner override =",

20 learner.isGumNumberOfThreadsOverriden ())
pyAgrum threads = 64 pyAgrum threads = 64
Learner threads = 64 Learner threads = 10
Learner override = False Learner override = True
Learner threads = 64 Learner override = False

11/2

Toward an optimal choice of the number of threads

QXDDifferent situations :

» Performing just one learning :
use pyAgrum number of threads

Toward an optimal choice of the number of threads

QXDDifferent situations :

» Performing just one learning :
use pyAgrum number of threads

» Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

Toward an optimal choice of the number of threads

QXDDifferent situations :

» Performing just one learning :
use pyAgrum number of threads

» Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

» Performing a small amount K of learnings :
let nb processors ~ A x B, with K multiple of A

perform A experiments in parallel
use B thread per BNlearner

12/27

Next multithreading steps. ..

» Allow Databases to be column-wise instead of row-wise

= improved cacheline use

Parallelization in Inferences

New exact inference architecture (1/2)

New exact inference architecture (1/2)

New exact inference architecture (1/2)

New exact inference architecture (1/2)

P(E|B, C) P(F|E)
g BCE E] @

@ P(A B) = P(AB) x P(B)
Q P(B) =3 4P(AB)

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B) \®‘/

Q P(B) =3, P(A B)

New exact inference architecture (1/2)

Q P(A,B) = P(A|B) x P(B) J
Q P(B) =3, P(A B)

New exact inference architecture (1/2)

Q P(A,B) = P(A|B) x P(B) J
Q P(B) =3, P(A B)

New exact inference architecture (1/2)

@ P(A B) = P(AB) x P(B) J
O P(B) =3, P(A B)
© P(C.D) = P(C|D) x P(D)

Q P(C) =35 P(C, D)

New exact inference architecture (1/2)

@ P(A B) = P(AB) x P(B) J ©
O P(B) =3, P(A B)
© P(C.D) = P(C|D) x P(D)

Q P(C) =35 P(C, D)

New exact inference architecture (1/2)

@ P(A B) = P(AB) x P(B) J ©
O P(B) =3, P(A B)
© P(C.D) = P(C|D) x P(D)

Q P(C) =35 P(C, D)

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B) a °
Q P(B) = 4 P(A.B)

(

(

Q P(C, D) = P(C|D) x P(D)
Q P(C) =35 P(C, D)

Q P(B.C.E) = P(E|B,C) x P(B) x P(C)
Q P(E) =35 P(B,C. E)

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B)

(

O P(B) =3, P(A B)

Q P(C, D) = P(C|D) x P(D)

Q P(C) =35 P(C, D)

Q P(B.C.E) = P(E|B,C) x P(B) x P(C)
(

Q P(E) = Y5 P(B,C, E)

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B)

(
O P(B) =3, P(A B)
Q P(C, D) = P(C|D) x P(D)
Q P(C) =35 P(C, D)
Q P(B.C,E) = P(E|B,C) x P(B
(

Q P(E) = Y5 P(B,C, E)

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B)

(
O P(B) =3, P(A B)
Q P(C, D) = P(C|D) x P(D)
Q P(C) =35 P(C, D)
Q P(B.C,E) = P(E|B,C) x P(B
Q P(E) =35 P(B,C. E)
Q P(E. F) = P(F|E) x P(E)
Q P(F) = X e P(E, F)

15/27

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B)

Q P(E.F) = P(F|E) x P(E)
Q P(F) = X e P(E, F)

(
O P(B) =3, P(A B)
Q P(C, D) = P(C|D) x P(D)
Q P(C) =35 P(C, D)
Q P(B.C,E) = P(E|B,C) x P(B
Q P(E) =35 P(B,C. E)
(
(

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B)

Q P(E.F) = P(F|E) x P(E)
Q P(F) = X e P(E, F)

(
O P(B) =3, P(A B)
Q P(C, D) = P(C|D) x P(D)
Q P(C) =35 P(C, D)
Q P(B.C,E) = P(E|B,C) x P(B
Q P(E) =35 P(B,C. E)
(
(

New exact inference architecture (1/2)

Q P(A,B) = P(AB) x P(B)

(
Q P(B) =32, P(A B)
Q P(C,D) = P(C|D) x P(D)
Q P(C) =3, P(C, D)
Q P(B,C,E) = P(E|B, C) x P(B) x P(C)
Q P(E) = 4 P(B.C.) o
Q@ P(E,F) = P(F|E) x P(E) Schedule ——{x]
(

Q P(F) =3 P(EF)

New exact inference architecture (2/2)

u Create a junction tree

New exact inference architecture (2/2)

u Create a junction tree
u Create a schedule from the JT

New exact inference architecture (2/2)

u Create a junction tree
u Create a schedule from the JT
u Execute the schedule

New exact inference architecture (2/2)

u Create a junction tree
u Create a schedule from the JT
u Execute the schedule

» Used by LazyPropagation and Shafer-Shenoy

New exact inference architecture (2/2)

u Create a junction tree
u Create a schedule from the JT
u Execute the schedule

» Used by LazyPropagation and Shafer-Shenoy

» 2 schedulers :
» Sequential scheduler

» Parallel scheduler

New exact inference architecture (2/2)

u Create a junction tree
u Create a schedule from the JT
u Execute the schedule

» Used by LazyPropagation and Shafer-Shenoy

» 2 schedulers :
» Sequential scheduler

» Parallel scheduler

» 1 Rule : Use the sequential scheduler if and only if :

1 thread or nb elementary operations < 10°

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

Parallel scheduler — an example

P(AB) P(B) P(D) P(CID)

LazyPropagation’s inferences on Munin4

o
(o¢]
T
|

o
»
T
|

Inference time

| | | | | | |
0 5 10 15 20 25 30 35
Number of threads

18/27

Toward an optimal use of schedulers (1/2)

» Synchronization mechanisms :
» Mutexes / locks

» Condition variables

» Atomics

Toward an optimal use of schedulers (1/2)

» Synchronization mechanisms :
» Mutexes / locks

» Condition variables

» Atomics

Toward an optimal use of schedulers (1/2)

» Synchronization mechanisms :
» Mutexes / locks
» Condition variables

» Atomics

... but there is still an overhead.

Toward an optimal use of schedulers (1/2)

» Synchronization mechanisms :
» Mutexes / locks
» Condition variables
» Atomics

... but there is still an overhead.

» Experiments on large BNs :
» Major time reduction from 1 to 4-6 threads

» More limited gain above 6 threads

Toward an optimal use of schedulers (1/2)

» Synchronization mechanisms :
» Mutexes / locks
» Condition variables
» Atomics

... but there is still an overhead.

» Experiments on large BNs :
» Major time reduction from 1 to 4-6 threads
» More limited gain above 6 threads

» Explanation : clique sizes imbalanced

19/27

Toward an optimal use of schedulers (2/2)

o
Qi\DDifferent situations for large BNs :

» Performing just one inference :
parallellize with pyAgrum number of threads

Toward an optimal use of schedulers (2/2)

o
Qi\DDifferent situations for large BNs :

» Performing just one inference :
parallellize with pyAgrum number of threads

» Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

Toward an optimal use of schedulers (2/2)

o
?Different situations for large BNs :

» Performing just one inference :
parallellize with pyAgrum number of threads

» Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

» Performing a small amount K of inferences :
perform K /4 experiments in parallel
use 4 threads per LazyPropagation instance

20/27

Schedules and their operators

Objects contained into schedules :

» ScheduleMultiDim : abstraction of potentials

Schedules and their operators

Objects contained into schedules :

» ScheduleMultiDim : abstraction of potentials

» ScheduleBinaryCombination : T®@ T +— T

» ScheduleProjection : T vi— T

Schedules and their operators

Objects contained into schedules :

» ScheduleMultiDim : abstraction of potentials
» ScheduleBinaryCombination : T®@ T +— T
» ScheduleProjection : T vi— T

» ScheduleDeletion : remove a ScheduleMultiDim from memory

» ScheduleStorage : store a ScheduleMultiDim into a container

Schedules and their operators

Objects contained into schedules :

» ScheduleMultiDim : abstraction of potentials

» ScheduleBinaryCombination : T®@ T +— T

» ScheduleProjection : T vi— T

» ScheduleDeletion : remove a ScheduleMultiDim from memory

» ScheduleStorage : store a ScheduleMultiDim into a container

= very general-purpose

Next multithreading steps. ..

» Expose numberOfOperations and setMaxMemory to pyAgrum

Next multithreading steps. ..

» Expose numberOfOperations and setMaxMemory to pyAgrum

» Reduce the overhead of using schedulers

Next multithreading steps. ..

» Expose numberOfOperations and setMaxMemory to pyAgrum
» Reduce the overhead of using schedulers

» Add schedulers parallelizing both operators and operations

— requires splitting Potential operators computations

Next multithreading steps. ..

» Expose numberOfOperations and setMaxMemory to pyAgrum
» Reduce the overhead of using schedulers

» Add schedulers parallelizing both operators and operations

— requires splitting Potential operators computations

» Add a scheduler exploiting GPU

— requires ScheduleOperator for changing the order of
variables in potentials

aGrUM’s multithreading facility

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used except if :

» either the user compiled aGrUM with --threads=st1 option

» or the compiler does not support openMP

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used except if :
» either the user compiled aGrUM with --threads=st1 option

» or the compiler does not support openMP

» Parallelism achieved by using ThreadExecutor instances

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used except if :
» either the user compiled aGrUM with --threads=st1 option

» or the compiler does not support openMP
» Parallelism achieved by using ThreadExecutor instances

» Advantages :

» Multithreaded objects are agnostic

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used except if :
» either the user compiled aGrUM with --threads=st1 option

» or the compiler does not support openMP
» Parallelism achieved by using ThreadExecutor instances

» Advantages :
» Multithreaded objects are agnostic

» Exceptions can be catched

24/27

openMP vs. STL threads

» Multithreaded objects support both openMP and STL threads

» By default, openMP is used except if :
» either the user compiled aGrUM with --threads=st1 option

» or the compiler does not support openMP
» Parallelism achieved by using ThreadExecutor instances

» Advantages :
» Multithreaded objects are agnostic
» Exceptions can be catched

» When one thread : no overhead

24/27

ThreadExecutors — an example

auto func = [] (const std::size_t this_thread,
const std::size_t nb_threads) -> void {
std::cout << "thread #" << this_thread << std::endl;
}i

try {
gum: : ThreadExecutor: :execute (5, func);
} catch(...) {

std::cout << "Exception catched" << std::endl;

}

ThreadExecutors — an example

auto func = [] (const std::size_t this_thread,
const std::size_t nb_threads) -> void {

std::cout << "thread #" << this_thread << std::endl;
}i

try {
gum: : ThreadExecutor: :execute (5, func);
} catch(...) {

std::cout << "Exception catched" << std::endl;
}

thread #0

thread #4

thread #3

thread #thread #2
1

ThreadExecutors — an example

auto func = [] (const std::size_t this_thread,
const std::size_t nb_threads) -> void {

std::cout << "thread #" << this_thread << std::endl;
}i

try {
gum: : ThreadExecutor: :execute (5, func);
} catch(...) {

std::cout << "Exception catched" << std::endl;
}

thread #0

thread #4

thread #3

thread #thread #2
1

— Exceptions can be catched in Python!

25/27

ThreadExecutors — another example

auto func = [] (const std::size_t this_thread,
const std::size t nb_threads,
int nb,
const std::string& str) -> wvoid {
std::cout << str << nb << " #"

<< this_thread << std::endl;
}i

gum: : ThreadExecutor: :execute (5, func, 8, "thread ");

ThreadExecutors — another example

auto func = [] (const std::size_t this_thread,
const std::size_ t nb_threads,
int nb,
const std::string& str) -> wvoid {
std::cout << str << nb << " #"

<< this_thread << std::endl;
}i

gum: : ThreadExecutor: :execute (5, func, 8, "thread ");

thread 8 #thread Othread 8 #4thread 8 #2
8
thread 8 #3

#1

ThreadExecutors — another example

auto func = [] (const std::size_t this_thread,
const std::size_ t nb_threads,
int nb,
const std::string& str) -> wvoid {
std::cout << str << nb << " #"

<< this_thread << std::endl;
}i

gum: : ThreadExecutor: :execute (5, func, 8, "thread ");

thread 8 #thread Othread 8 #4thread 8 #2
8
thread 8 #3

#1

— Functions can have as many parameters as wished

Only constraint : first 2 params : this_thread and nb_threads

26/27

Conclusion

» Parallelism speeds-up learning and inference computations

Conclusion

» Parallelism speeds-up learning and inference computations

» Many things to do yet for inferences

» in particular, check const objects. ..

Conclusion

» Parallelism speeds-up learning and inference computations

» Many things to do yet for inferences

» in particular, check const objects. ..

» Reduce schedules’ creations overhead

Conclusion

» Parallelism speeds-up learning and inference computations

» Many things to do yet for inferences
» in particular, check const objects. ..

» Reduce schedules’ creations overhead

» inferences over GPU

