

FAST AND FURIOUS THINGS IN AGRUM/PyAGRUM

CHRISTOPHE GONZALES

LIS – AIX-MARSEILLE UNIVERSITÉ

Parallelization in Learning algorithms

Parallelization in Learning algorithms

Parallelization in Inferences

Parallelization in Learning algorithms

Parallelization in Inferences

aGrUM's multithreading facility

BN structure learning : Greedy Hill Climbing

```
1  $\mathcal{G}_{best} \leftarrow$  initial graph (empty)
2  $sc_{best} \leftarrow \text{Score}(\mathcal{G}_{best})$ 
3
4 repeat
5    $found \leftarrow \text{false}$ 
6   foreach  $\mathcal{G}' \in \text{neighborhood of } \mathcal{G}_{best}$  do
7      $sc' \leftarrow \text{Score}(\mathcal{G}')$ 
8     if  $sc' > sc_{best}$  then
9        $\mathcal{G}_{best} \leftarrow \mathcal{G}', sc_{best} \leftarrow sc'$ 
10       $found \leftarrow \text{true}$ 
11 until  $found = \text{false};$ 
12
13 return  $\mathcal{G}_{best}$ 
```

```
1  $\mathcal{G}_{best} \leftarrow$  initial graph (empty)
2  $sc_{best} \leftarrow \text{Score}(\mathcal{G}_{best})$ 
3
4 repeat
5    $found \leftarrow \text{false}$ 
6   foreach  $\mathcal{G}' \in \text{neighborhood of } \mathcal{G}_{best}$  do
7      $sc' \leftarrow \text{Score}(\mathcal{G}')$ 
8     if  $sc' > sc_{best}$  then
9        $\mathcal{G}_{best} \leftarrow \mathcal{G}', sc_{best} \leftarrow sc'$ 
10       $found \leftarrow \text{true}$ 
11 until  $found = \text{false};$            ► 2 parallelization opportunities :
12
13 return  $\mathcal{G}_{best}$ 
```

BN structure learning : Greedy Hill Climbing

```
1  $\mathcal{G}_{best} \leftarrow$  initial graph (empty)
2  $sc_{best} \leftarrow \text{Score}(\mathcal{G}_{best})$ 
3
4 repeat
5    $found \leftarrow \text{false}$ 
6   foreach  $\mathcal{G}' \in \text{neighborhood of } \mathcal{G}_{best}$  do
7      $sc' \leftarrow \text{Score}(\mathcal{G}')$ 
8     if  $sc' > sc_{best}$  then
9        $\mathcal{G}_{best} \leftarrow \mathcal{G}', sc_{best} \leftarrow sc'$ 
10       $found \leftarrow \text{true}$ 
11 until  $found = \text{false};$            ► 2 parallelization opportunities :
12
13 return  $\mathcal{G}_{best}$                   ► One thread per graph  $\mathcal{G}'$ 
```

```
1  $\mathcal{G}_{best} \leftarrow$  initial graph (empty)
2  $sc_{best} \leftarrow \text{Score}(\mathcal{G}_{best})$ 
3
4 repeat
5    $found \leftarrow \text{false}$ 
6   foreach  $\mathcal{G}' \in \text{neighborhood of } \mathcal{G}_{best}$  do
7      $sc' \leftarrow \text{Score}(\mathcal{G}')$ 
8     if  $sc' > sc_{best}$  then
9        $\mathcal{G}_{best} \leftarrow \mathcal{G}', sc_{best} \leftarrow sc'$ 
10       $found \leftarrow \text{true}$ 
11 until  $found = \text{false};$            ► 2 parallelization opportunities :
12
13 return  $\mathcal{G}_{best}$                   ► One thread per graph  $\mathcal{G}'$ 
                                ► Several threads for each score
```

```
1  $\mathcal{G}_{best} \leftarrow$  initial graph (empty)
2  $sc_{best} \leftarrow \text{Score}(\mathcal{G}_{best})$ 
3
4 repeat
5    $found \leftarrow \text{false}$ 
6   foreach  $\mathcal{G}' \in \text{neighborhood of } \mathcal{G}_{best}$  do
7      $sc' \leftarrow \text{Score}(\mathcal{G}')$ 
8     if  $sc' > sc_{best}$  then
9        $\mathcal{G}_{best} \leftarrow \mathcal{G}', sc_{best} \leftarrow sc'$ 
10       $found \leftarrow \text{true}$ 
11 until  $found = \text{false};$            ► 2 parallelization opportunities :
12
13 return  $\mathcal{G}_{best}$                   ► One thread per graph  $\mathcal{G}'$ 
                                ► Several threads for each score
```

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Parallelizing the scores

The BD score

$$\text{Score}_{BD}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

Alarm : learning structure with 10K records

Alarm : learning structure with 10K records

► aGrUM's rule : Number of records per thread ≥ 512

Alarm : learning structure with 200K records

aGrUM's rules :

- ➊ pyAgrum manages a « package-wide » number of threads
 ⇒ by default, same number for all multithreaded objects

aGrUM's rules :

- ➊ pyAgrum manages a « package-wide » number of threads
 ⇒ by default, same number for all multithreaded objects
- ➋ Objects can override this number

```
import pyAgrum as gum
```

► Package-wide functions :

function	meaning
gum.getMaxNumberOfThreads	The number of processors of the computer

```
import pyAgrum as gum
```

► Package-wide functions :

function	meaning
gum.getMaxNumberOfThreads	The number of processors of the computer

```
import pyAgrum as gum
```

► Package-wide functions :

function	meaning
gum.getMaxNumberOfThreads	The number of processors of the computer
gum.getNumberOfLogicalCores	The number of processors

```
import pyAgrum as gum
```

► Package-wide functions :

function	meaning
gum.getMaxNumberOfThreads	The number of processors of the computer
gum.getNumberOfLogicalCores	The number of processors
gum.getNumberOfThreads	The number of threads used by default by pyAgrum objects

```
import pyAgrum as gum
```

► Package-wide functions :

function	meaning
gum.getMaxNumberOfThreads	The number of processors of the computer
gum.getNumberOfLogicalCores	The number of processors
gum.getNumberOfThreads	The number of threads used by default by pyAgrum objects
gum.setNumberOfThreads	Sets the number of threads used by default

Using the pyAgrum-wide API – an example

```
1 import pyAgrum as gum
2
3 print("Nb procs =", gum.getMaxNumberOfThreads())
```

Using the pyAgrum-wide API – an example

```
1 import pyAgrum as gum  
2  
3 print("Nb procs =", gum.getMaxNumberOfThreads())
```

Nb procs = 64

Using the pyAgrum-wide API – an example

```
1 import pyAgrum as gum
2
3 print("Nb procs =", gum.getMaxNumberOfThreads())
4
5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
```

Nb procs = 64

Using the pyAgrum-wide API – an example

```
1 import pyAgrum as gum
2
3 print("Nb procs =", gum.getMaxNumberOfThreads())
4
5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
```

Nb procs = 64
Nb used = 64

Using the pyAgrum-wide API – an example

```
1 import pyAgrum as gum
2
3 print("Nb procs =", gum.getMaxNumberOfThreads())
4
5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
7
8 # Changing this default number
9 gum.setNumberOfThreads(10)
```

Nb procs = 64
Nb used = 64

Using the pyAgrum-wide API – an example

```
1 import pyAgrum as gum
2
3 print("Nb procs =", gum.getMaxNumberOfThreads())
4
5 # Default number of threads for all pyAgrum objects
6 print("Nb used =", gum.getNumberOfThreads())
7
8 # Changing this default number
9 gum.setNumberOfThreads(10)
10
11 # Default number of threads for all pyAgrum objects
12 print("Nb used =", gum.getNumberOfThreads())
```

```
Nb procs = 64
Nb used = 64
Nb used = 10
```

- ▶ Object overriding methods :

► Object overriding methods :

function	meaning
<code>obj.getNumberThreads</code>	returns the current number of threads used by <code>obj</code>

► Object overriding methods :

function	meaning
<code>obj.getNumberThreads</code>	returns the current number of threads used by <code>obj</code>
<code>obj.setNumberThreads</code>	changes the number of threads used by <code>obj</code>

► Object overriding methods :

function	meaning
<code>obj.getNumberThreads</code>	returns the current number of threads used by <code>obj</code>
<code>obj.setNumberThreads</code>	changes the number of threads used by <code>obj</code>
<code>obj.isGumNumberThreadsOverridden</code>	indicates whether <code>obj</code> uses its own number or that of pyAgrum

Using the object API – an example

```
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =", 
7      learner.isGumNumberOfThreadsOverriden())
```

Using the object API – an example

```
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =", 
7       learner.isGumNumberOfThreadsOverriden())
```

```
pyAgrum threads = 64
Learner threads = 64
Learner override = False
```

Using the object API – an example

```
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =", 
7       learner.isGumNumberOfThreadsOverriden())
8
9 # changing the number of threads only for the learner
10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =", 
14       learner.isGumNumberOfThreadsOverriden())
```

```
pyAgrum threads = 64
Learner threads = 64
Learner override = False
```

Using the object API – an example

```
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =", 
7       learner.isGumNumberOfThreadsOverriden())
8
9 # changing the number of threads only for the learner
10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =", 
14       learner.isGumNumberOfThreadsOverriden())
```

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Using the object API – an example

```
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =", learner.isGumNumberOfThreadsOverriden())
7
8
9 # changing the number of threads only for the learner
10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =", learner.isGumNumberOfThreadsOverriden())
14
15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19      " Learner override =", learner.isGumNumberOfThreadsOverriden())
20
```

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Using the object API – an example

```
1 import pyAgrum as gum
2 learner = gum.BNLearner("data/alarm.csv")
3
4 print("pyAgrum threads =", gum.getNumberOfThreads())
5 print("Learner threads =", learner.getNumberOfThreads())
6 print("Learner override =", learner.isGumNumberOfThreadsOverriden())
7
8
9 # changing the number of threads only for the learner
10 learner.setNumberOfThreads(10)
11 print("pyAgrum threads =", gum.getNumberOfThreads())
12 print("Learner threads =", learner.getNumberOfThreads())
13 print("Learner override =", learner.isGumNumberOfThreadsOverriden())
14
15
16 # making the learner use the package-wide number again
17 learner.setNumberOfThreads(0) # 0 = package-wide
18 print("Learner threads =", learner.getNumberOfThreads(),
19      " Learner override =", learner.isGumNumberOfThreadsOverriden())
20
```

pyAgrum threads = 64
Learner threads = 64
Learner override = False

pyAgrum threads = 64
Learner threads = 10
Learner override = True

Learner threads = 64 Learner override = False

Different situations :

- ▶ Performing just one learning :
use pyAgrum number of threads

Different situations :

- ▶ Performing just one learning :
use pyAgrum number of threads
- ▶ Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel

Different situations :

- ▶ Performing just one learning :
use pyAgrum number of threads
- ▶ Performing a large amount of learning experiments :
use 1 thread per BNlearner
perform experiments in parallel
- ▶ Performing a small amount K of learnings :
let nb processors $\approx A \times B$, with K multiple of A
perform A experiments in parallel
use B thread per BNlearner

Next multithreading steps...

- ▶ Allow Databases to be column-wise instead of row-wise
 - ⇒ improved cacheline use

Parallelization in Inferences

New exact inference architecture (1/2)

New exact inference architecture (1/2)

New exact inference architecture (1/2)

① $P(A, B) = P(A|B) \times P(B)$

New exact inference architecture (1/2)

① $P(A, B) = P(A|B) \times P(B)$

② $P(B) = \sum_A P(A, B)$

New exact inference architecture (1/2)

① $P(A, B) = P(A|B) \times P(B)$

② $P(B) = \sum_A P(A, B)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$

New exact inference architecture (1/2)

New exact inference architecture (1/2)

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$

New exact inference architecture (1/2)

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B, C} P(B, C, E)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B, C} P(B, C, E)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B, C} P(B, C, E)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B,C} P(B, C, E)$
- 7 $P(E, F) = P(F|E) \times P(E)$
- 8 $P(F) = \sum_E P(E, F)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B, C} P(B, C, E)$
- 7 $P(E, F) = P(F|E) \times P(E)$
- 8 $P(F) = \sum_E P(E, F)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B,C} P(B, C, E)$
- 7 $P(E, F) = P(F|E) \times P(E)$
- 8 $P(F) = \sum_E P(E, F)$

New exact inference architecture (1/2)

- 1 $P(A, B) = P(A|B) \times P(B)$
- 2 $P(B) = \sum_A P(A, B)$
- 3 $P(C, D) = P(C|D) \times P(D)$
- 4 $P(C) = \sum_D P(C, D)$
- 5 $P(B, C, E) = P(E|B, C) \times P(B) \times P(C)$
- 6 $P(E) = \sum_{B, C} P(B, C, E)$
- 7 $P(E, F) = P(F|E) \times P(E)$
- 8 $P(F) = \sum_E P(E, F)$

Create a junction tree

New exact inference architecture (2/2)

Create a junction tree

Create a schedule from the JT

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

- Used by LazyPropagation and Shafer-Shenoy

New exact inference architecture (2/2)

1 Create a junction tree

2 Create a schedule from the JT

3 Execute the schedule

- Used by LazyPropagation and Shafer-Shenoy
- 2 schedulers :
 - Sequential scheduler
 - Parallel scheduler

- 1 Create a junction tree
- 2 Create a schedule from the JT
- 3 Execute the schedule

- ▶ Used by LazyPropagation and Shafer-Shenoy
- ▶ 2 schedulers :
 - ▶ Sequential scheduler
 - ▶ Parallel scheduler
- ▶ 1 Rule : Use the sequential scheduler if and only if :
1 thread or nb elementary operations $< 10^6$

Parallel scheduler – an example

Parallel scheduler – an example

Parallel scheduler – an example

Parallel scheduler – an example

Parallel scheduler – an example

Parallel scheduler – an example

Parallel scheduler – an example

LazyPropagation's inferences on Munin4

- ▶ **Synchronization mechanisms :**

- ▶ Mutexes / locks
- ▶ Condition variables
- ▶ Atomics

- ▶ **Synchronization mechanisms :**

- ▶ Mutexes / locks
- ▶ Condition variables
- ▶ Atomics

- ▶ **Synchronization mechanisms :**

- ▶ Mutexes / locks
- ▶ Condition variables
- ▶ Atomics

... but there is still an overhead.

- ▶ **Synchronization mechanisms :**

- ▶ Mutexes / locks
- ▶ Condition variables
- ▶ Atomics

... but there is still an overhead.

- ▶ **Experiments on large BNs :**

- ▶ Major time reduction from 1 to 4-6 threads
- ▶ More limited gain above 6 threads

- ▶ **Synchronization mechanisms :**

- ▶ Mutexes / locks
- ▶ Condition variables
- ▶ Atomics

... but there is still an overhead.

- ▶ **Experiments on large BNs :**

- ▶ Major time reduction from 1 to 4-6 threads
- ▶ More limited gain above 6 threads
- ▶ Explanation : clique sizes imbalanced

Different situations for large BNs :

- ▶ Performing just one inference :
parallelize with pyAgrum number of threads

Different situations for large BNs :

- ▶ Performing just one inference :
parallelize with pyAgrum number of threads
- ▶ Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel

Different situations for large BNs :

- ▶ Performing just one inference :
parallelize with pyAgrum number of threads
- ▶ Performing a large amount of inference experiments :
use 1 thread per LazyPropagation instance
perform experiments in parallel
- ▶ Performing a small amount K of inferences :
perform $K/4$ experiments in parallel
use 4 threads per LazyPropagation instance

Objects contained into schedules :

- ▶ ScheduleMultiDim : abstraction of potentials

Objects contained into schedules :

- ▶ ScheduleMultiDim : abstraction of potentials
- ▶ ScheduleBinaryCombination : $T \otimes T \mapsto T$
- ▶ ScheduleProjection : $T \Downarrow v \mapsto T$

Objects contained into schedules :

- ▶ ScheduleMultiDim : abstraction of potentials
- ▶ ScheduleBinaryCombination : $T \otimes T \mapsto T$
- ▶ ScheduleProjection : $T \Downarrow v \mapsto T$
- ▶ ScheduleDeletion : remove a ScheduleMultiDim from memory
- ▶ ScheduleStorage : store a ScheduleMultiDim into a container

Objects contained into schedules :

- ▶ ScheduleMultiDim : abstraction of potentials
- ▶ ScheduleBinaryCombination : $T \otimes T \mapsto T$
- ▶ ScheduleProjection : $T \Downarrow v \mapsto T$
- ▶ ScheduleDeletion : remove a ScheduleMultiDim from memory
- ▶ ScheduleStorage : store a ScheduleMultiDim into a container

⇒ very general-purpose

Next multithreading steps...

- ▶ Expose `numberOfOperations` and `setMaxMemory` to `pyAgrum`

Next multithreading steps...

- ▶ Expose `numberOfOperations` and `setMaxMemory` to `pyAgrum`
- ▶ Reduce the overhead of using schedulers

Next multithreading steps...

- ▶ Expose `numberOfOperations` and `setMaxMemory` to `pyAgrum`
- ▶ Reduce the overhead of using schedulers
- ▶ Add schedulers parallelizing both operators and operations
 - ⇒ requires splitting Potential operators computations

Next multithreading steps...

- ▶ Expose `numberOfOperations` and `setMaxMemory` to `pyAgrum`
- ▶ Reduce the overhead of using schedulers
- ▶ Add schedulers parallelizing both operators and operations
 - ⇒ requires splitting Potential operators computations
- ▶ Add a scheduler exploiting GPU
 - ⇒ requires `ScheduleOperator` for changing the order of variables in potentials

aGrUM's multithreading facility

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads
- ▶ By default, openMP is used

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads
- ▶ By default, openMP is used except if :
 - ▶ either the user compiled aGrUM with --threads=stl option
 - ▶ or the compiler does not support openMP

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads
- ▶ By default, openMP is used except if :
 - ▶ either the user compiled aGrUM with --threads=stl option
 - ▶ or the compiler does not support openMP
- ▶ Parallelism achieved by using ThreadExecutor instances

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads
- ▶ By default, openMP is used except if :
 - ▶ either the user compiled aGrUM with --threads=stl option
 - ▶ or the compiler does not support openMP
- ▶ Parallelism achieved by using ThreadExecutor instances
- ▶ Advantages :
 - ▶ Multithreaded objects are agnostic

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads
- ▶ By default, openMP is used except if :
 - ▶ either the user compiled aGrUM with --threads=stl option
 - ▶ or the compiler does not support openMP
- ▶ Parallelism achieved by using ThreadExecutor instances
- ▶ Advantages :
 - ▶ Multithreaded objects are agnostic
 - ▶ Exceptions can be caught

openMP vs. STL threads

- ▶ Multithreaded objects support both openMP and STL threads
- ▶ By default, openMP is used except if :
 - ▶ either the user compiled aGrUM with --threads=stl option
 - ▶ or the compiler does not support openMP
- ▶ Parallelism achieved by using ThreadExecutor instances
- ▶ Advantages :
 - ▶ Multithreaded objects are agnostic
 - ▶ Exceptions can be caught
 - ▶ When one thread : no overhead

ThreadExecutors – an example

```
auto func = [] (const std::size_t this_thread,
                 const std::size_t nb_threads) -> void {
    std::cout << "thread #" << this_thread << std::endl;
};

try {
    gum::ThreadExecutor::execute(5, func);
} catch(...) {
    std::cout << "Exception catched" << std::endl;
}
```

ThreadExecutors – an example

```
auto func = [] (const std::size_t this_thread,
                 const std::size_t nb_threads) -> void {
    std::cout << "thread #" << this_thread << std::endl;
};

try {
    gum::ThreadExecutor::execute(5, func);
} catch(...) {
    std::cout << "Exception catched" << std::endl;
}
```

```
thread #0
thread #4
thread #3
thread #thread #2
1
```

ThreadExecutors – an example

```
auto func = [] (const std::size_t this_thread,
                 const std::size_t nb_threads) -> void {
    std::cout << "thread #" << this_thread << std::endl;
};

try {
    gum::ThreadExecutor::execute(5, func);
} catch(...) {
    std::cout << "Exception catched" << std::endl;
}
```

```
thread #0
thread #4
thread #3
thread #thread #2
1
```

⇒ Exceptions can be catched in Python !

ThreadExecutors – another example

```
auto func = [] (const std::size_t this_thread,
                const std::size_t nb_threads,
                int nb,
                const std::string& str) -> void {
    std::cout << str << nb << " #"
                << this_thread << std::endl;
};

gum::ThreadExecutor::execute(5, func, 8, "thread ");
```

ThreadExecutors – another example

```
auto func = [] (const std::size_t this_thread,
                const std::size_t nb_threads,
                int nb,
                const std::string& str) -> void {
    std::cout << str << nb << " #"
                << this_thread << std::endl;
};

gum::ThreadExecutor::execute(5, func, 8, "thread ");
```

```
thread 8 #thread 0thread 8 #4thread 8 #2
8
thread 8 #3
#1
```

ThreadExecutors – another example

```
auto func = [] (const std::size_t this_thread,
                const std::size_t nb_threads,
                int nb,
                const std::string& str) -> void {
    std::cout << str << nb << " #"
                << this_thread << std::endl;
};

gum::ThreadExecutor::execute(5, func, 8, "thread ");
```

```
thread 8 #thread 0thread 8 #4thread 8 #2
8
thread 8 #3
#1
```

⇒ Functions can have as many parameters as wished

Only constraint : first 2 params : `this_thread` and `nb_threads`

Conclusion

- ▶ Parallelism speeds-up learning and inference computations

Conclusion

- ▶ Parallelism speeds-up learning and inference computations
- ▶ Many things to do yet for inferences
 - ▶ in particular, check const objects...

Conclusion

- ▶ Parallelism speeds-up learning and inference computations
- ▶ Many things to do yet for inferences
 - ▶ in particular, check const objects...
 - ▶ Reduce schedules' creations overhead

Conclusion

- ▶ Parallelism speeds-up learning and inference computations
- ▶ Many things to do yet for inferences
 - ▶ in particular, check `const` objects...
 - ▶ Reduce schedules' creations overhead
 - ▶ inferences over GPU