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Probabilistic Classification and
Graphical Models



Probabilistic Classification and Graphical Models

e Let the features set Xi,..., X, and its class Y

Definition (Probabilistic Classification)

We are searching for the classifier € such as :

Y=Y =C(Xg,...,Xn)

Definition (Maximum Likelihood)

Y = argmax P (Xy,...,X,| Y)
Y

Definition (Maximum A Posteriori)

Ymap = arginaxP (Y| X1yeeey Xn)
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Probabilistic Classification and Graphical Models

Fixed structure

Naive Bayes

Y

X1 X2 X3

— We suppose that Vk # i, X, 1L X;|Y
— The MAP calculation becomes :

d
f/:argmax< H k|y>

Y k=1
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Probabilistic Classification and Graphical Models

Simple Structure

TAN
(Tree-Augmented Naive Bayes)

Y

X1 X2 X3

— Any X; feature can have one other parent than Y
— Here the MAP becomes :

d
y = argmax ('D(y) ’ H P(Xk|)/= (XParent"))

Y k=1
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Probabilistic Classification and Graphical Models

Any structure

Bayesian Network

X6 X7

X5

X1

X3 Xa

— Y class is processed as any feature

— Learning to find the structure and inference for the prediction
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Classification of classification methods

. Neural Networks
. Ensemble Methods (Random Forest, ...)
. Support Vector Machine

O Graphical Models

Accuracy

@ Decision Trees
O Regression Algorithms
O Classification Rules

Explainability

Figure 1 — Classification of Machine Learning models in function of predictive

power and their explainability (Dam, Tran, and Ghose 2018)
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Markov Blanket

Definition

A Markov Blanket of a random variable Y in a random variable set
S ={Xi,..., Xy} is the minimal subset S; of S, conditioned on which
other variables are independent with Y :

Y UL S\S; | St

— Markov Blanket of Y
— contains its parents,
its children and every others

parents of its children

— Feature selection
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Implementation of Bayesian
Network Classifiers



BNClassifier in pyAgrum

e skbn : Machine learning module of pyAgrum which builds a
probabilistic classifier compatible with scikit-learn
— BNClassifier

# Create different classifiers.
classifiers = {

‘L1 logistic’: LogisticRegression(C=C, penalty="11",
solver="saga’,
multi_class="multinomial’,
max_iter=1ee08),

‘L2 logistic (Multinomial)': LogisticRegression(C=C, penalty="12',
solver="saga’,
multi_class="multinomial’,
max_iter=186e8),

‘L2 logistic (OvR)': LogisticRegression(C=C, penalty="12', — flt()
solver="saga’,
multi class="ovr', — predict ()

max_iter=16000),

‘Linear SVC': SVC(kernel='linear', C=C, probability=True,

random_state=8),

‘GPC': GaussianProcessClassifier(kernel),

'BH' : BNClassifier(learningMethod='MIIC',
aPriori="Smoothing', aPrioriWeight=1,
discretizationNbBins=5,
discretizationStrategy="kmeans",
discretizationThreshold=1@)
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BNClassifier in pyAgrum

e 1st example : Comparing several binary classifiers

Input doto Nearest Nelghtiors  Linear Svm

Moons

Circle

LinSep

Moans Circle LinSep. 10 / 24



BNClassifier in pyAgrum

e 2nd

example : Comparing several n-ary classifiers (on IRIS dataset)

Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

L1 logistic
Linear SVC

I lass 1 lass 2
Class 0 Class 1 Class 2 S0 Slase Gt

Class 0 Class 1 Class 2
Class 0 Class 1 Class 2

L2 logistic (OvR) L2 logistic (Multinomial)
BN

Class 1 Class 2

Linear SVC

fo

Accuracy (train) L1 logistic: 82.7%

Accuracy (train) for L2 logistic (Multinomial): 82.7%
Accuracy (train) for L2 logistic (OvR): 79.3%
)
)
)

3 =

Accuracy (train) for Linear SVC: 82.0%
Accuracy (train) for GPC: 82.7%
Accuracy (train) for BN: 83.3%

L]
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BNClassifier in pyAgrum

e 3rd example : Recognizing hand-written digits

Training: 0 Training: 1 Training: 2 Training: 3

0143

Prediction: 8.0 Prediction: 6.0 Prediction: 4.0 Prediction: 9.0

1543

Confusion Matrix

5 — Accuracy of 0.87
. (0.97 for SVC classifier)

True label
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BNClassifier in pyAgrum

e 3rd example : Recognizing hand-written digits

— Bayesian Network
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BNClassifier in pyAgrum

e 3rd example : 3rd example : Recognizing hand-written digits

Markov blanket of the classifier:

o000 o oo
ééééa P L T T
S
o

Number of pixels used for classification

: 33/64

— Visualization of the only pixels

used in the classification
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Examples from https://webia.lip6.fr/~phw//aGrUM/docs/last/notebooks/CompareClassifiersWithSklearn. ipynb.html


https://webia.lip6.fr/~phw//aGrUM/docs/last/notebooks/CompareClassifiersWithSklearn.ipynb.html
https://webia.lip6.fr/~phw//aGrUM/docs/last/notebooks/CompareClassifiersWithSklearn.ipynb.html

Context of the Application in
Nursing Homes



NETSoins

e leading competitor in the healthcare software market for french
nursing homes

e a file for each resident used and filled in by all types of staff : care
assistants, nurses, doctors, animators, pharmacists, administrative
and paramedical staff...

e Databases with 550,000 residents over 3 years on average

esnerher.
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Pressure Ulcer

e First unfavorable health event we are trying to predict

e Skin lesion when the pressure is too high — immobility

e Prevalence of 7.2% in french nursing homes

e Demeaning, long, painful and costly to treat condition

e BUT highly avoidable with a specific and multidisciplinary approach
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Figure 2 — The different stages of pressure ulcers (Belmin et al, 2016)
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Actual medical methods

EXAMPLE OF BRADEN

No . Walks No
Impairment 4| Rarely Moist |4 Frequently 4 Limitations 4| Excellent | 4
A . 3 No
Slightly Occasionally Walks Slightly
Limited 3 Moist & Qccasionaly Limited 3| Adequate | 3 | Apparent |3
Problem
Very " ; Very Probably Potential
Limited 2| 'VeryMoist 2] Chairbound (2 Limited Inadequate 2 Problem 2
Completely Constantly Completely
Limited 1 Moist 1| Bedbound |1 Irivicbile 1| VeryPoor | 1 Problem |1

e Norton and Braden scales : risk detecting methods for pressure
ulcers used in nursing homes

e Problem : simple to use but not very effective, therefore not widely
used

17 /24



How can we use NETSoins’ data to improve
pressure ulcers risk detection?



Bayesian Network Classifier for
Pressure Ulcers Classification



Methodology and Pretreatment

e Issues with the access to health data

e Transformation of an event database into a tabular database suitable
for learning while keeping medical meaning
— research and creation of 30 features

e Base separation : 75 % of residents for the training dataset and 25
% for the validation dataset

e 3 datasets with 3 different timeframes objectives for about 100 000
residents each

e Missing values completion with KNNImputer method
e Automatic discretization into 10 categories when necessary

e BNClassifier parameters :
e Use of the MIIC algorithm
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Results

Predicted Class

Class =1

Class =0

Actual Class

Class=1

True Positive

False Negative

Class=0

False Positive

True Negative

Definition (F-Score)

Fscore = 2 x

e Sensibility = Recall

e Accuracy = T2ETN

precision x sensibility

precision + sensibility

_ TP
— 2 TP+FP

TP+ FP

_TP_
TP+FN + FN

+ TriFn TP+FN
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Results

e ROC and Precision-Recall Curve :

ROC Precision-Recall
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e Threshold choice
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e Summary of the different F-scores according to the methods and
prediction timeframe :

F-Score 1-month | 2-months | 3-months

BN Classifier 0,70 0,69 0,67

Random Forest 0,72 0,69 0,70

AdaBoost 0,69 0,67 0,69

Nearest Neighbors 0,55 0,55 0,56

Logistic Regression 0,32 0,36 0,42
Braden 0,32 = =
Norton 0,29 - -
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Graphical Results

e The obtained Bayesian Network and its Markov Blanket :
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Graphical Results

e Markov Blanket
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Conclusion and Future Works




Conclusion and Future Works

e Classifier for pressure ulcers prediction efficient and relevant thanks
to Bayesian Networks, better than the scores currently used in
nursing homes

e Many possibilities of improvement :

e integration of other features from NETSoins into aggregators
e more complete exploitation of time series

e better management of missing data

e "expert" discretization

e Improve the explainability (SHAP Values, ...)

e Application to other adverse health events

e Integration of the classifier in NETSoins, with alerts to bring
high-risk situations to the attention of physicians and caregivers
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