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Trust and

Output=0.4

1

Age =65 —

Sex=F —
BP =180 —
BMI=40 —

ML Health:the ML model and production deployment system MLreproducibility :All predictions must be reproducible.
must be healthy - ie behaving in production as expected and

within norms specified by the data scientist. _ . _ _
ML Explainability:It must be possible to determine why the ML

ML Security:the ML algorithm must be healthy and explainable algorithm behaved the way that it did for any particular prediction
in the face of malicious or non-malicious attacks - ie efforts to and what factors led to the prediction..

change or manipulate its behavior.
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Diary

Shapley Values

Shapley Values in Bayesian Network

Shapley Values in Causal Model

Bayesian Networks < Predictive Models

SAP affiliate company. All rights reserved. | PUBLIC



Shapley



PredicitveModel

Binary class prediction problemY,

Database composed of N variables: X = { X;,X;,--+,X;,+, Xy } and D rows.

f(Xxy,-+,X,) prediction function that takes those variables as inputs.

> (X1, XN)
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Contribution analysis:

Index Age Sex BP BMI
1953 65 F 180 40
Output=0.4 Output=0.4
1
Age=65 — Age =65
Sex=F — | o Sex=F
Explanation
BP =180 — BP =180
BMI =40 — BMI =40
1
Base rate = 0.1 Base rate = 0.1
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Contribution analysis:

LSTAT
RM
DIS

AGE
CRIM
NOX

PTRATIO
TAX
B

Sum of 4 other features

—ZIlO —I5 (I) é 1ID 1I5 20
Contribution (impact on model output)

Graphics fromofSM Lundberg et al., “Explainable machine-learning predictions for the prevention ofhypoxaemiaduring surgery”, Nat BiomedEng, flight. 2, no. 10, p. 749-760, Oct. 2018.
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Feature value
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Sum of 4 other features

+3.87

0.0

0.5

1.0

1.|5 2:0 2:5 3:0
Mean(|contribution|)

3.5

4.0



Shapley

Lloyd Shapley 1953
Cooperative game theory

Fair distribution

Shapley Value formula for the player X; :

SI'(N — |5 —1)!
b=y PRI s 0 - vis)

N!
SEX/{Xi}

With N: Number of players, S: Coalition of players, X;: it player and v(S): worth of coalition S.
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Definition of

Shapley Values Conditionals
v(S) = E[f (x5, X5)[Xs = x5 ]

- ] P(Xslxs) f(Xs, x5) dXs

Best estimate of f given S.

Conditional

5.0

25 >< Analysis on the distribution of the data, at X
fixed we are on the manifold.

> 0.0

25 Possibly a non-zero value for a variable not

used by the model.
5 0 5 10

Graphics from:Frye,rowat, FeigeATsymmetric Shapley values: incorporating causal knowledge into model-agnostic Explainability. Advances in Neural Information Processing Systems
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Definitions of

Shapley Value Marginals
v(S) = Elf(xs, X)) = | PCXs) £ (X, x5) dXs

Marginal Marginal Expectation.
50
55 Maycreate unrealistic data.
-9
0.0
Always a null value for a variable not used by
2.5 the model.

Graphics from:Frye,rowat, FeigeATsymmetric Shapley values: incorporating causal knowledge into model-agnostic Explainability. Advances in Neural Information Processing Systems
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Tree

Shap values are very to calculate.

The algorithm TreeExplainer is one of the fastest.

This approach uses the information computed during the training of a forest of decision trees.

1
Optimized for decision trees, its complexity goes fromO(TLM2"V) a O(TLP?) .

With : T the number of trees, L the maximum number of leaves in a tree, N the number of variables, P maximum tree
depth

Give , they are neither marginals nor conditionals.

[1] Lundberg, SM,Erion, G., Chen, H. et al. From local explanations to global understanding with explainable Al for trees. Nat Machintel 2,56-67 (2020).
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Shapley values



Prediction and

visit to Asia

lung cancer tuberculosis

] bronchitis tuberculos or cancer

dyspnoea positive XraY

The prediction of Y is given by P(Y|X; -+, Xy) obtained from the joint distribution.

We use the logit(P(Y| ...)) in order to have an additive explanation.
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Inference

© 2021 SAP SE or an SAP affiliate company. All rights rese

rved. | PUBLIC

Compute new probabilistic information from a Bayesian network and
some observations.

Exact inference calculates the posterior distribution for some variable
In Bayesian networks given (partial) observations.

v({X1, X,}) = logit(P(Y = 1| X; = x4, X, = x2))
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Simplification

Possible combinations: 2V

V-structures and other graph specifications help us know which
coalitions are interesting to compute.

v({Z,X1,X,}) —v({Z,X;}) = 0 becauseY L X,|Z

v({Z,X1,X,}) and v({Z, X;}) are exchangeable.

For marginal Shapley values: only the Markov Blanket matters.
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Significance of

Feature Importance in %
- I
g
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Mean(|SHAP value|)
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Shapley values

v($) = E[f(X)ldo(Xs = x5)] = [ P(Xs| do(Xs = x5)) f(Xs, Xs) dXs "

To take into account the possible causal relationships between the 'in-coalition' characteristics and the 'out-of-
coalition' characteristics, we condition 'by intervention' for which we use the do-calculus of Pearl.

The contribution ¢y, measures the relevance of the variable X; through the (average) prediction obtained if we

intervene on the characteristic X; at its value x; with respect to (the counterfactual situation of) not knowing its
value.

[2] TomHeskes, ,Evi Sijben,JohnGabriel Bucur, and Tom Claassen. "Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models." (2020).
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Do-calculuswithout latent variable:
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dO(XZ = xZ)
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Bayesian networkss



Bayesian networks—

!

Drive the predictive analysis:

Do not take the consequences of the Target

Markov blanket for variable selection

22

© 2021 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



Bayesian networks«

Graph Discovery:

TreeShap and Marginal to find the Markov Blanket
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