Coupling aGrUM /pyAgrum with external
libraries: an application to Copula Bayesian
Networks

Marvin LASSERRE
supervised by Pierre-Henri WUILLEMIN (LIP6) and Régis LEBRUN (Airbus CRT)
directed by Christophe GONZALES (LIS)

March 18, 2022

° w2 SORBONNE
I UNIVERSITE
Struns asr "

Learning high-dimensional probabilistic continuous models

1/22

Learning high-dimensional probabilistic continu

® Why high-dimensional ? Because complex systems involve a large number of
variables,

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

® Why non-parametric ? Because parametric models such as Gaussian are too

restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

® Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

® Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (~ 5 variables),

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

® Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

® Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (~ 5 variables),

® Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

® Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

® Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (~ 5 variables),

® Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

® Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

1/22

Learning high-dimensional probabilistic continuous models

® Why high-dimensional ? Because complex systems involve a large number of
variables,

® Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

® Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

® Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (~ 5 variables),

® Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

® Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

® Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1/22

Copula Bayesian Networks
(CBNs)

Bayesian Networks

e Compact representation of a joint probability distribution over a set
of variables X using :

2/22

Bayesian Networks

e Compact representation of a joint probability distribution over a set
of variables X using :

— A Directed Acyclic Graph (DAG),

I/(g) = {(X, 1 ND,\Pa,)}

2/22

Bayesian Networks

e Compact representation of a joint probability distribution over a set
of variables X using :
— A Directed Acyclic Graph (DAG),
— A set of Conditional Probability Distributions (CPD).

2/22

Bayesian Networks

e Compact representation of a joint probability distribution over a set
of variables X using :

— A Directed Acyclic Graph (DAG),
— A set of Conditional Probability Distributions (CPD).

[0l o | (oo |
o]

(X| X3)
(X

G [701X, Xa)
015

X
[

08
0 2
0
0

0
1
4
5

09
03
[X2

~[=]<[e]

X:
0
1
0
1

Discrete case : Conditional Probability Tables.

2/22

Bayesian Networks

e Compact representation of a joint probability distribution over a set
of variables X using :

— A Directed Acyclic Graph (DAG),
— A set of Conditional Probability Distributions (CPD).

[0l o | (oo |
o]

(X| X3)
(X

G [701X, Xa)
015

X
[

08
0 2
0
0

0
1
4
5

09
03
[X2

~[=]<[e]

X:
0
1
0
1

Discrete case : Conditional Probability Tables.
Continuous case : 777

2/22

Bayesian Networks and continuous data

® Discretization :

1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

3/22

Bayesian Networks and continuous data

® Discretization :

1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

¢ Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.
K
1989: f(y|x) = N(y: Bo + 3 Bixi,0})
i=1

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

3/22

Bayesian Networks and continuous data

® Discretization :

1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

¢ Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.
K
1989: f(y|x) = N(y: Bo + 3 Bixi,0})
i=1

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

® Mixture models: Langseth et al. 2012; Cortijo et al. 2016

1. Good: Expressive models,
2. Bad: Hard to learn

3/22

4/22

® U= (U, ,U,), continuous random variable over [0, 1],

4/22

Copulas

e U= (U, ,U,), continuous random variable over [0, 1]",

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]" :

C(ur,...,up) =P(Ur <up,...,U, < up)

with uniform one-dimensional marginals :

C(l,...,u,-,...,l):u,-.

4/22

Copulas

e U= (U, ,U,), continuous random variable over [0, 1]",

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]" :

C(ul,...,u,,):]P’(UlSul,...,U,,<un)

with uniform one-dimensional marginals :

C(l,...,u,-,...,l):u,-.

e |f C is absolutely continuous, a copula density function c exists :

o"C
C(X) = m(xl,- . ’Xn)

4/22

Sklar’s theorem

Theorem (Sklar, 1959)

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X,, there exists a unique

copula function C, such that:

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X,, there exists a unique

copula function C, such that:
F(X17 U 7X'7) - C(F]-(Xl)7 T F"(X"))

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X,, there exists a unique

copula function C, such that:
F(X17 U 7X'7) - C(F]-(Xl)7 T F"(X"))

Moreover, if F is absolutely continuous,

F(xi, - %) = c(Fi(x1),- - , Fn(xa)) H fi(x)

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X,, there exists a unique

copula function C, such that:
F(X17 U 7X'7) - C(F]-(Xl)7 T F"(X"))

Moreover, if F is absolutely continuous,

F(xi, - %) = c(Fi(x1),- - , Fn(xa)) H fi(x)

® Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X, there exists a unique

copula function C, such that:
F(X17 U 7X'7) - C(F]-(Xl)7 T F"(X"'))

Moreover, if F is absolutely continuous, m
Fxa, - xn) = c(Fulxa), -, Fala)) T i0)
i=1

® Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.
® (C encodes all the information about the dependencies between the

variables: interesting for independence tests.

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X, there exists a unique

copula function C, such that:
F(X17 U 7X'7) - C(F]-(Xl)7 T F"(X"'))

Moreover, if F is absolutely continuous, m
Fxa, - xn) = c(Fulxa), -, Fala)) T i0)
i=1

® Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.
® (C encodes all the information about the dependencies between the

variables: interesting for independence tests.

A\ C becomes hard to model for high dimensions.

5/22

Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over Xi,--- , X, there exists a unique

copula function C, such that:
F(X17 U 7X'7) - C(F]-(Xl)7 T F"(X"'))

Moreover, if F is absolutely continuous, m
Fxa, - xn) = c(Fulxa), -, Fala)) T i0)
i=1

® Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.
® (C encodes all the information about the dependencies between the

variables: interesting for independence tests.

A\ C becomes hard to model for high dimensions.

° : use the BN framework over the copula function — Copula

Bayesian Networks (CBNs) (Elidan 2010)
5/22

Example : Gaussian copula

(a) Gaussian CDF (b) Gaussian PDF

0 1 045
(X1, X2) ~ N(p, T), with <0> an <0,45 0.25)

6/22

Example : Gaussian copula

o~ ®©

009999999
pws

=
o

0.8
0.6
0.4

0.2

0.8 1.0
0.0 0.4 0.6
0.0 0.2

0.

1.0
0 02 04 06 08
00 O

(a) Copula function (b) Copula density function

® (X1, X2) ~ N(p,X), with 4 = <8> il ST = (1 0.45)

0.45 0.25

_ 1 09
° (U]_ = ¢O,1(X1)7 U2 - ¢0,%(X2)) A CN(R) with R = (O 9 1)

6/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X,

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X,

® Oc¢ : set of (local) copula densities c;,

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X,

® Oc¢ : set of (local) copula densities c;,

® O set of marginal densities f;

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X,

® Oc¢ : set of (local) copula densities c;,

® O set of marginal densities f;

A Copula Bayesian Network (CBN) is a triplet (G, ©¢, ©¢)

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X

® Oc¢ : set of (local) copula densities c;,

® O set of marginal densities f;

A Copula Bayesian Network (CBN) is a triplet (G, ©c¢, ©f) which
encodes a joint density f(X) that factorizes over G:

f(x1, -, %) = c(Fi(x1), - Cs) Hf x;) (Sklar)

HR (00)|F(pax)) - fi(x)

ci(ui,i)

where R,'(U,"?T,') = c(m) -

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X

® Oc¢ : set of (local) copula densities c;,

® O set of marginal densities f;

A Copula Bayesian Network (CBN) is a triplet (G, ©c¢, ©f) which
encodes a joint density f(X) that factorizes over G:

f(x1, -, %) = c(Fi(x1), - Cs) Hf x;) (Sklar)

HR (00)|F(pax)) - fi(x)

ci(ui,i)

where R,'(U,"?T,') = c(m) -

® Same graphical language than classical BNs (same independences)

7/22

Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X

® Oc¢ : set of (local) copula densities c;,

® O set of marginal densities f;

A Copula Bayesian Network (CBN) is a triplet (G, ©c¢, ©f) which
encodes a joint density f(X) that factorizes over G:

f(x1, -, %) = c(Fi(x1), - Cs) Hf x;) (Sklar)

HR (00)|F(pax)) - fi(x)

ci(ui,i)

where R,'(U,"?T,') = c(m) -

® Same graphical language than classical BNs (same independences)

e (Classic algorithms can be adapted for structural learning.
7/22

Copula Bayesian Networks : example

8/22

Copula Bayesian Networks : example

(a(m) =1,A(x)) €8 ‘/@ (ca(u2) = 1, ()

e (c3(us3, ur, u2), f3(x3))

8/22

Copula Bayesian Networks : example

(a(m) =1,A(x)) €8 ‘/@ (ca(u2) = 1, ()

e (c3(us3, ur, u2), f3(x3))

® Oc={a(n)=1c(w) =1,c(us, u, u), ¥

8/22

Copula Bayesian Networks : example

(a(m) =1,A(x)) €8 ‘/@ (ca(u2) = 1, ()

e (c3(us3, ur, u2), f3(x3))

® Oc={a(n)=1c(w) =1,c(us, u, u), ¥
* Or = {fi(x1), R(x), B(x3), }

8/22

Copula Bayesian Networks : example

(a(m) =1,A(x)) €8 ‘/@ (ca(u2) = 1, ()

e (c3(us, u1, u2), 3(x3))

® Oc={a(n)=1c(w) =1,c(us, u, u), }

* O = {fi(x), (%), (x3), }

* fxu,x2,x3,xa) = [Ri(F1(x1)) i (xa)][Re(F2(x2)) 2 (x2)]
X [Rs(F3(x3)[F1(x1), F2(x2))f3(x3)]

X

8/22

Copula Bayesian Networks : example

(a(m) =1,A(x)) €8 ‘/@ (ca(u2) = 1, ()

e (c3(us, u1, u2), 3(x3))

® Oc={a(n)=1c(w) =1,c(us, u, u), }

* O = {fi(x), (%), (x3), }

* fxu,x2,x3,xa) = [Ri(F1(x1)) i (xa)][Re(F2(x2)) 2 (x2)]
X [Rs(F3(x3)[F1(x1), F2(x2))f3(x3)]
X

® Parametric copulas: Gaussian, Student, Dirichlet, ...

8/22

Copula Bayesian Networks : example

() =1,f(x)) Ca) () = 1, (%))

e (c3(us, u1, u2), 3(x3))

® Oc={a(n)=1c(w) =1,c(us, u, u), ¥
* Or = {fi(x1), R(x), B(x3), }

f(x1, X2, X3, %) = [Ri(F1(x1)) A (a)][Re(F2(x2)) 2 (x2)]
X [Rs(F3(x3)[F1(x1), F2(x2))f3(x3)]
X

® Parametric copulas: Gaussian, Student, Dirichlet, ...

® Non-parametric copulas: Empirical Bernstein Copula (EBC)

8/22

Non-parametric estimation : empirical Bernstein copula

® Sample D = {x[1],...,x[m]} — Copula sample C = {ul[1],...,u[m]}
with u[m] = (u1[m], ..., up[m]), ui[m] = Fi(x;[m])

9/22

Non-parametric estimation : empirical Bernstein copula

® Sample D = {x[1],...,x[m]} — Copula sample C = {ul[1],...,u[m]}
with u[m] = (u1[m], ..., ua[m]), ui[m] = F;(x;[m])

® Empirical copula:
1 m n
==> " [I1tulil < u}.

j=1i=1

3

9/22

Non-parametric estimation : empirical Bernstein copula

® Sample D = {x[1],...,x[m]} — Copula sample C = {ul[1],...,u[m]}
with u[m] = (u1[m], ..., ua[m]), ui[m] = F;(x;[m])

® Empirical copula:
1 m n
==> " [I1tulil < u}.

j=1i=1

3

® Bernstein polynomial :
m

Bum(u) = (")u'(1—u)™"

v

9/22

Non-parametric estimation : empirical Bernstein copula

® Sample D = {x[1],...,x[m]} — Copula sample C = {ul[1],...,u[m]}
with u[m] = (u1[m], ..., ua[m]), ui[m] = F;(x;[m])
® Empirical copula:
1

)= 5 Tt < u

3

® Bernstein polynomial :

m

By,m(u) = ()u‘/(l —u)mv

v

® Empirical Bernstein copula (EBC)

K K n
CEn@) =D > Cnlo s) [Bk (),
=i

v1=0 vp=0

9/22

Non-parametric estimation : empirical Bernstein copula

® Sample D = {x[1],...,x[m]} — Copula sample C = {u[1],..., u[m]}

with u[m] = (wn[rm], .., unlm), wm] = ([
e Empirical copula:
%Zm;f[n{u 0] < wi}.
® Bernstein polynomial :
By.m(u) = (’:)uV(l — u)mv

® Empirical Bernstein copula (EBC) Cp :
CR (s ZH’,[lsJ[](“f
i=1 j=1

with r;[i] = [Ku;[i]] , sj[i] = K — rj[i] + 1 and I, g the cumulative function of
beta distribution,

9/22

Non-parametric estimation : empirical Bernstein copula

® Sample D = {x[1],...,x[m]} — Copula sample C = {u[1],..., u[m]}

with u[m] = (wn[rm], .., unlm), wm] = ([
e Empirical copula:
%Zm;f[n{u 0] < wi}.
® Bernstein polynomial :
By.m(u) = (’:)uV(l — u)mv

® Empirical Bernstein copula (EBC) Cp :

L1 ()
=il

3|~

&Ms

él?,m(u) =

with rj[i] = [Kuy[i]] | si[i] = K — f’j[l] + 1 and /, g the cumulative function of
beta distribution,

® Empirical Bernstein copula (EBC) density ég by differentiation:

Zl_[ﬁrn,,n uj)

1111

9/22

Non-parametric estimation : empirical Bernstein copula

—2 =il 0 1

[§)

(a) Gaussian sample

10/22

Non-parametric estimation : empirical Bernstein

0.0 0.2 0.4 0.6 0.8 1.0

(a) Gaussian copula density sample

10/22

Non-parametric estimation : empirical

Bernstein copula

1.0

N ow ey

1.0
0.8
0.6
0.4
0.2

1.0
0.0 0.8

0.6
0.4
0.0 0.2

0. - |
%‘[) 0.4 0.6 0.8 1.0

(a) Gaussian copula density (b) Gaussian copula density sample

10/22

Non-parametric estimation

[N

1.0
0.8
0.6
0.4
0.2

0.0

4 06 08 10
0.0 0.2 y

(a) Gaussian copula density

empirical Bernstein copula

10
as 06 08
00 02

(b) Bernstein copula: m = 102

10/22

Non-parametric estimation

o ow Y

1.0

08
0.0 04 06
00 02

(a) Gaussian copula density

1.0

empirical Bernstein copula

(b) Bernstein copula: m = 103

10/22

on-parametric estimation :

N oW Y

1.0
0.8
0.6
0.4
0.2

0.0

0.8
0.6

0.4
0.0 0.2

(a) Gaussian copula density

1.0

empirical Bernstein copula

(b) Bernstein copula: m = 10*

10/22

The otagrum module

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

What does it contain ?

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):
® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):
® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).
® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).
A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

® Several learning algorithms,

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):
® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

® Several learning algorithms,

® A detailed documentation.

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):
® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).
® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).
A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

® Several learning algorithms,

® A detailed documentation.

Where to find it ?

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):
® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

® Several learning algorithms,

® A detailed documentation.

Where to find it ?
® Module : openturns/otagrum (GitHub)

11/22

otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

® Several learning algorithms,
® A detailed documentation.
Where to find it ?
® Module : openturns/otagrum (GitHub)
® Experiments : MLasserre/otagrum-experiments (GitHub)

11/22

otagrum: installation

® Online website : nttps://openturns.github.io/otagrun/master/index.html

otagrum 0.5 documentation » OTAgrum documentation

OTAgrum documentation

Introduction

The aGrUM library provides efficient algorithms to create and manipulate graphical models. A particular
nually (tinw) case of such models s the class of Bayesian Networks (BN), which is of fist interest in association with
documentation OpenTURNS.

A Bayesian network, belef network or directed acyclic graphical model is a probabilistic graphical model that
represents a set of random variables and their conditional dependencies via a directed acyclic graph
(DAG). In this DAG, edges represent conditional dependencies; nodes which are not connected represent
variables which are conditionally independent of each other. Each node is associated with a probability
This Page function that takes as input a particular set of values for the node’s parent variables and gives the
probability of the variable represented by the node.

Quick search The manipulation of a Bayesian network s called inference. Efficient algorithms exist that perform

inference and learning of Bayesian networks.

What is otagrum ?
The otagrum module is the link between Bayesian networks buit with aGrUM and distributions defined
with OpenTURNS,
It offers the abiliy to
« define discretized aGrUM distributions from OpenTURNS distributions
+ extract marginal distributions of aGrUM Bayesian networks as OpenTURNS distributions

« define and estimate bayesian networks parameterized by local conditional copula
functions for each node (CBN)

® Can be easily installed using conda:

$ conda install -c conda-forge otagrum

® Or manually to have the development version.

12/22

https://openturns.github.io/otagrum/master/index.html

otagrum: an example of use

Using OTaGrUM: The wine data set

Importing modules

Entrée [1]: import openturns as ot
import openturns.viewer as otv

import pyAgrum as gum
import pyAgrum.lib.notebook as gnb

import otagrum as otagr

Loading data

Entrée [2]: data_ref = ot.Sample.ImportFromTextFile(winequality-red.csv', ";")

13/22

otagrum: an example of use

Structure learning with CBIC algorithm

Entrée [3]: learner = otagr.Tabulist(data_ref, 2, 10, 2) # Creating a Tabulist learner
cbic_dag = learner.learnDAG() # Learning DAG
gnb. showDot (cbic_dag. toDot (}))

pr— >

13/22

otagrum: an example of use

Structure learning with CPC algorithm

Entrée [4]: learner = otagr.ContinuousPC(data_ref, 4, ©.05) # Using a CPC learner
cpe_dag learner.learnDAG() # Learning DAG
gnb . showDot (cpc_dag. toDot ())

 fd aciity

" free sllur dioxid " lphstes

1
A«
<)

13/22

otagrum: an example of use

Structure learning with CMIIC algorithm

Entrée [5]: learner = otagr.ContinuousMIIC(data_ref) # Using a CMIIC learner
learner. setAlpha(0.04) # Setting the value of alpha
cmiic_dag = learner.learnDAG() # Learning DAG
gnb . showDot (cmiic_dag.toDot())

;

-
/ E N
/ density

3 |
() >

13/22

otagrum: an example of use

Parameter learning

Entrée [7]: cpc_cbn = otagr.ContinuousBayesianNetworkFactory(ot.KernelSmoothing(ot.Histogram()),
ot.BernsteinCopulaFactory(),
cpc_dag,

.05,

4,
False).build(data_ref)

13/22

otagrum: an example of use

Sampling the CBN

Entrée [9]: sample = cpc_chn.getsample(1000)
ot.VisualTest.DrawPairs (sample.getMarginal([2,1]))

out[9]:

,4
S
++

volatile acidity

0.6

o4

0z

fixed acidity

13/22

Structure learning for CBNs

Learning algorithms

® CPC a continuous PC algorithm based on an independence test
using Hellinger distance:

— M. Lasserre et al. (May 2020). “Constraint-Based Learning for
Non-Parametric Continuous Bayesian Networks”. In: FLAIRS 33 -
33rd Florida Artificial Intelligence Research Society Conference.
Miami, United States: AAAI, pp. 581-586

— M. Lasserre et al. (2021a). “Constraint-based learning for
non-parametric continuous bayesian networks”. In: Annals of
Mathematics and Artificial Intelligence, pp. 1-18

e CMIIC, an algorithm based on information theory:
— M. Lasserre et al. (2021b). “Learning Continuous High-Dimensional
Models using Mutual Information and Copula Bayesian Networks".
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 13, pp. 12139-12146
® Improvement of the state of the art algorithm (CBIC) by using
mutual information to speed up the calculations.

14 /22

Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

—1
2.
3
4
5

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

—1
2.
3
4
5

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

— A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,

A structure is learned from the generated data,

o> @ Y =

Structural scores are computed : F-score et SHD.

Number of nodes : n =5 Number of arcs : 1.2 x n]

15/22

Comparison method

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

1. A reference structure is chosen : ALARM or random,
— 2. Copulas are parametrized : Gaussian, Student or Dirichlet,
3. Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,
5. Structural scores are computed : F-score et SHD.

1.0

0.81

0.61

0.4

15/22

Comparison method

1. A reference structure is chosen : ALARM or random,
— 2. Copulas are parametrized : Gaussian, Student or Dirichlet,
3. Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,
5. Structural scores are computed : F-score et SHD.

10—

0.89
0.61.

0.4

0.2

15/22

Comparison method

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

1.

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

1.

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

15/22

Comparison method

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

o> @ Y =

Structural scores are computed : F-score et SHD.

® F-score : skeleton (undirected structure)

15/22

Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

® F-score : skeleton (undirected structure)

— Skeleton perfectly retrieved : F-score = 1

15/22

Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

® F-score : skeleton (undirected structure)

— Skeleton perfectly retrieved : F-score = 1

® Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

15/22

Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

® F-score : skeleton (undirected structure)

— Skeleton perfectly retrieved : F-score = 1

® Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

— CPDAG perfectly retrieved : SHD = 0

15/22

F-score evolution : ALARM structure

—— b-miic —— b-miic b-miic
0.4 g-miic 0.4 g-miic 0.4 g-miic
02 —— cbic [|[NE2 e ciic || 02 et hic
Lo 2000 1000 oo 0 2000 1000 oo 2000 1000 6000
(a) Gaussian case (b) Student Case (c) Dirichlet case
F-score evolution for CBIC, CPC, and B-CMIIC methods with respect to the

sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.

16 /22

SHD evolution : ALARM structure

80
b-miic —— b-miic
g-miic 60 g-miic
cpe

—— b-miic
g-miic

) 0 (
(5000 10000 15000 5000 10000 15000) 5000 10000 15000

(a) Gaussian case (b) Student case (c) Dirichlet case
SHD evolution for CBIC, CPC, and B-MIIC methods with respect to the

sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.

17/22

F-score evolution : random structures

-I" .
} cpe 2-cmiic

sl cbic —— b-cmiic
0 %5 50 75 07 %5 50 7 0 %5 50 75
(a) Gaussian case (b) Student case (c) Dirichlet case

F-score evolution for CBIC, CPC, and B-MIIC methods with respect to the

dimension of the random structures. The results are averaged over 2 random
structures of same dimension and over 5 different samples of size m = 10*.

18/22

SHD evolution : random structures

100 100 100
—}= cpe g-cmiic

751 =l chic 4 751 —— b-cmiic

25 50 75
(a) Gaussian case (b) Student case (c) Dirichlet case
SHD evolution for CBIC, CPC, and B-CMIIC methods with respect to the

dimension of the random structure. The results are averaged over 2 different structures
of same dimension and over 5 different samples of size m = 10*.

19/22

Temporal complexity

10° 10° 10°
g-cmiic

+ b-cmiic

== cpe
e chic

=3 -3 -3
10 2 8 32 e 2 8 32 o 2 8 32
(a) Gaussian case (b) Student case (c) Dirichlet case

Learning time in seconds for CBIC, CPC, et B-CMIIC with respect to the

dimension of the random structures. The results are averaged over 2 different random
structures of same dimension and over 5 different samples of size m = 10*.

20/ 22

Thank you for your attention !

Bibliography

@ Cortijo, S. and C. Gonzales (2016). “Bayesian networks with
conditional truncated densities”. In: The Twenty-Ninth International
Flairs Conference (cit. on pp. 17-19).

@ Elidan, G. (2010). “Copula bayesian networks". In: Advances in
neural information processing systems, pp. 559-567 (cit. on
pp. 24-31, 34-41).

[§ Langseth, H., T. D. Nielsen, R. Rumi, and A. Salmerén (2012).
"Mixtures of truncated basis functions’. In: International Journal of
Approximate Reasoning 53.2, pp. 212-227 (cit. on pp. 17-19).

@ Lasserre, M., R. Lebrun, and P.-H. Wuillemin (May 2020).
"Constraint-Based Learning for Non-Parametric Continuous Bayesian
Networks". In: FLAIRS 33 - 33rd Florida Artificial Intelligence
Research Society Conference. Miami, United States: AAAI,
pp. 581-586 (cit. on p. 81).

21/22

[§ Lasserre, M., R. Lebrun, and P.-H. Wuillemin (2021a).
“Constraint-based learning for non-parametric continuous bayesian
networks”. In: Annals of Mathematics and Artificial Intelligence,
pp. 1-18 (cit. on p. 81).

[§ Lasserre, M., R. Lebrun, and P.-H. Wuillemin (2021b). “Learning
Continuous High-Dimensional Models using Mutual Information and
Copula Bayesian Networks". In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 35. 13, pp. 12139-12146 (cit. on p. 81).

[§ Lauritzen, S. L. and N. Wermuth (1989). “Graphical models for
associations between variables, some of which are qualitative and
some quantitative”. In: The annals of Statistics, pp. 31-57 (cit. on
pp. 17-19).

@ Nelsen, R. B. (2007). An introduction to copulas. Springer Science &
Business Media (cit. on pp. 20-23).

22/22

	Copula Bayesian Networks (CBNs)
	The otagrum module
	Structure learning for CBNs
	Bibliography

