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variables,

® Why continuous ? Because in applications such as physics, engineering or
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® Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

® Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

® Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (~ 5 variables),

® Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

® Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

® Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.
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¢ Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.
K
1989: f(y|x) = N(y: Bo + 3 Bixi,0})
i=1

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

® Mixture models: Langseth et al. 2012; Cortijo et al. 2016

1. Good: Expressive models,
2. Bad: Hard to learn
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e U= (U, ,U,), continuous random variable over [0, 1]",

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]" :

C(ul,...,u,,):]P’(UlSul,...,U,,<un)

with uniform one-dimensional marginals :

C(l,...,u,-,...,l):u,-.

e |f C is absolutely continuous, a copula density function c exists :

o"C
C(X) = m(xl,- . ’Xn)
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® Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.
® (C encodes all the information about the dependencies between the

variables: interesting for independence tests.

A\ C becomes hard to model for high dimensions.

° : use the BN framework over the copula function — Copula

Bayesian Networks (CBNs) (Elidan 2010)
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Example : Gaussian copula

(a) Gaussian CDF (b) Gaussian PDF

0 1 045
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Definition (Copula Bayesian Network, Elidan 2010)

e G : DAG over X

® Oc¢ : set of (local) copula densities c;,

® O set of marginal densities f;

A Copula Bayesian Network (CBN) is a triplet (G, ©c¢, ©f) which
encodes a joint density f(X) that factorizes over G:

f(x1, -, %) = c(Fi(x1), - Cs) Hf x;) (Sklar)

HR (00)|F(pax)) - fi(x)

ci(ui,i)

where R,'(U,"?T,') = c(m) -

® Same graphical language than classical BNs (same independences)

e (Classic algorithms can be adapted for structural learning.
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() =1,f(x)) Ca) () = 1, (%))

e (c3(us, u1, u2), 3(x3))

® Oc={a(n)=1c(w) =1,c(us, u, u), ¥
* Or = {fi(x1), R(x), B(x3), }

f(x1, X2, X3, %) = [Ri(F1(x1)) A (a)][Re(F2(x2)) 2 (x2)]
X [Rs(F3(x3)[F1(x1), F2(x2))f3(x3)]
X

® Parametric copulas: Gaussian, Student, Dirichlet, ...

® Non-parametric copulas: Empirical Bernstein Copula (EBC)
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® Bernstein polynomial :
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® Empirical Bernstein copula (EBC)
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beta distribution,
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otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

® OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

® aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all: otagrum.

What does it contain ?
e A CBN class,

® Several learning algorithms,
® A detailed documentation.
Where to find it ?
® Module : openturns/otagrum (GitHub)
® Experiments : MLasserre/otagrum-experiments (GitHub)
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otagrum: installation

® Online website : nttps://openturns.github.io/otagrun/master/index.html

otagrum 0.5 documentation » OTAgrum documentation

OTAgrum documentation

Introduction

The aGrUM library provides efficient algorithms to create and manipulate graphical models. A particular
nually (tinw) case of such models s the class of Bayesian Networks (BN), which is of fist interest in association with
documentation OpenTURNS.

A Bayesian network, belef network or directed acyclic graphical model is a probabilistic graphical model that
represents a set of random variables and their conditional dependencies via a directed acyclic graph
(DAG). In this DAG, edges represent conditional dependencies; nodes which are not connected represent
variables which are conditionally independent of each other. Each node is associated with a probability
This Page function that takes as input a particular set of values for the node’s parent variables and gives the
probability of the variable represented by the node.

Quick search The manipulation of a Bayesian network s called inference. Efficient algorithms exist that perform

inference and learning of Bayesian networks.

What is otagrum ?
The otagrum module is the link between Bayesian networks buit with aGrUM and distributions defined
with OpenTURNS,
It offers the abiliy to
« define discretized aGrUM distributions from OpenTURNS distributions
+ extract marginal distributions of aGrUM Bayesian networks as OpenTURNS distributions

« define and estimate bayesian networks parameterized by local conditional copula
functions for each node (CBN)

® Can be easily installed using conda:

$ conda install -c conda-forge otagrum

® Or manually to have the development version.
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https://openturns.github.io/otagrum/master/index.html

otagrum: an example of use

Using OTaGrUM: The wine data set

Importing modules

Entrée [1]: import openturns as ot
import openturns.viewer as otv

import pyAgrum as gum
import pyAgrum.lib.notebook as gnb

import otagrum as otagr

Loading data

Entrée [2]: data_ref = ot.Sample.ImportFromTextFile( winequality-red.csv', ";")
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otagrum: an example of use

Structure learning with CBIC algorithm

Entrée [3]: learner = otagr.Tabulist(data_ref, 2, 10, 2) # Creating a Tabulist learner
cbic_dag = learner.learnDAG() # Learning DAG
gnb. showDot (cbic_dag. toDot (}))

pr— >
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otagrum: an example of use

Structure learning with CPC algorithm

Entrée [4]: learner = otagr.ContinuousPC(data_ref, 4, ©.05) # Using a CPC learner
cpe_dag learner.learnDAG() # Learning DAG
gnb . showDot (cpc_dag. toDot ())
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otagrum: an example of use

Structure learning with CMIIC algorithm

Entrée [5]: learner = otagr.ContinuousMIIC(data_ref) # Using a CMIIC learner
learner. setAlpha(0.04) # Setting the value of alpha
cmiic_dag = learner.learnDAG() # Learning DAG
gnb . showDot (cmiic_dag.toDot())

;

-
/ E N
/ density

3 |
() >

13/22



otagrum: an example of use

Parameter learning

Entrée [7]: cpc_cbn = otagr.ContinuousBayesianNetworkFactory(ot.KernelSmoothing(ot.Histogram()),
ot.BernsteinCopulaFactory(),
cpc_dag,

.05,

4,
False).build(data_ref)
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otagrum: an example of use

Sampling the CBN

Entrée [9]: sample = cpc_chn.getsample(1000)
ot.VisualTest.DrawPairs (sample.getMarginal([2,1]))

out[9]:
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S
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Structure learning for CBNs




Learning algorithms

® CPC a continuous PC algorithm based on an independence test
using Hellinger distance:

— M. Lasserre et al. (May 2020). “Constraint-Based Learning for
Non-Parametric Continuous Bayesian Networks”. In: FLAIRS 33 -
33rd Florida Artificial Intelligence Research Society Conference.
Miami, United States: AAAI, pp. 581-586

— M. Lasserre et al. (2021a). “Constraint-based learning for
non-parametric continuous bayesian networks”. In: Annals of
Mathematics and Artificial Intelligence, pp. 1-18

e CMIIC, an algorithm based on information theory:
— M. Lasserre et al. (2021b). “Learning Continuous High-Dimensional
Models using Mutual Information and Copula Bayesian Networks".
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 13, pp. 12139-12146
® Improvement of the state of the art algorithm (CBIC) by using
mutual information to speed up the calculations.

14 /22



Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.
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Number of nodes : n =5 Number of arcs : 1.2 x n]
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Comparison method

o> @ Y =

A reference structure is chosen : ALARM or random,
Copulas are parametrized : Gaussian, Student or Dirichlet,
Samples are generated from the CBN : forward-sampling,
A structure is learned from the generated data,

Structural scores are computed : F-score et SHD.

® F-score : skeleton (undirected structure)

— Skeleton perfectly retrieved : F-score = 1

® Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

— CPDAG perfectly retrieved : SHD = 0
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F-score evolution : ALARM structure

—— b-miic —— b-miic b-miic
0.4 g-miic 0.4 g-miic 0.4 g-miic
02 —— cbic [|[NE2 e ciic || 02 et hic
Lo 2000 1000 oo 0 2000 1000 oo 2000 1000 6000
(a) Gaussian case (b) Student Case (c) Dirichlet case
F-score evolution for CBIC, CPC, and B-CMIIC methods with respect to the

sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.
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SHD evolution : ALARM structure

80
b-miic —— b-miic
g-miic 60 g-miic
cpe

—— b-miic
g-miic

) 0 (
( 5000 10000 15000 5000 10000 15000 ) 5000 10000 15000

(a) Gaussian case (b) Student case (c) Dirichlet case
SHD evolution for CBIC, CPC, and B-MIIC methods with respect to the

sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.
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F-score evolution : random structures

-I" .
_}_ cpe 2-cmiic

sl cbic —— b-cmiic
0 %5 50 75 07 %5 50 7 0 %5 50 75
(a) Gaussian case (b) Student case (c) Dirichlet case

F-score evolution for CBIC, CPC, and B-MIIC methods with respect to the

dimension of the random structures. The results are averaged over 2 random
structures of same dimension and over 5 different samples of size m = 10*.
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SHD evolution : random structures

100 100 100
—}= cpe g-cmiic

751 =l chic 4 751 —— b-cmiic

25 50 75
(a) Gaussian case (b) Student case (c) Dirichlet case
SHD evolution for CBIC, CPC, and B-CMIIC methods with respect to the

dimension of the random structure. The results are averaged over 2 different structures
of same dimension and over 5 different samples of size m = 10*.
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Temporal complexity

10° 10° 10°
g-cmiic

+ b-cmiic

== cpe
e chic

=3 -3 -3
10 2 8 32 e 2 8 32 o 2 8 32
(a) Gaussian case (b) Student case (c) Dirichlet case

Learning time in seconds for CBIC, CPC, et B-CMIIC with respect to the

dimension of the random structures. The results are averaged over 2 different random
structures of same dimension and over 5 different samples of size m = 10*.
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Thank you for your attention !
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