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Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.
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Copula Bayesian Networks
(CBNs)



Bayesian Networks

• Compact representation of a joint probability distribution over a set
of variables X using :

– A Directed Acyclic Graph (DAG),
– A set of Conditional Probability Distributions (CPD).

Discrete case : Conditional Probability Tables.

Continuous case : ???
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Bayesian Networks and continuous data

• Discretization :
1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

• Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.

1989: f (y |x) = N (y ;β0 +
k∑

i=1
βixi , σ

2
y )

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

• Mixture models: Langseth et al. 2012; Cortijo et al. 2016
1. Good: Expressive models,
2. Bad: Hard to learn
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Copulas

• U = (U1, · · · ,Un), continuous random variable over [0, 1]n,

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]n :

C (u1, . . . , un) = P(U1 ≤ u1, . . . ,Un ≤ un)

with uniform one-dimensional marginals :

C (1, . . . , ui , . . . , 1) = ui .

• If C is absolutely continuous, a copula density function c exists :

c(x) =
∂nC

∂x1 · · · ∂xn
(x1, · · · , xn)
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Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)
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Example : Gaussian copula
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Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.
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Copula Bayesian Networks : example

X1

X3

X2

X4

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)
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Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )
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Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :
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Non-parametric estimation : empirical Bernstein copula
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Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Gaussian copula density sample

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Gaussian copula density sample

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

(b) Bernstein copula: m = 102

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

(b) Bernstein copula: m = 103

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b) Bernstein copula: m = 104

10 / 22



The otagrum module



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)
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otagrum: installation

• Online website : https://openturns.github.io/otagrum/master/index.html

• Can be easily installed using conda:
$ conda install -c conda-forge otagrum

• Or manually to have the development version.
12 / 22

https://openturns.github.io/otagrum/master/index.html


otagrum: an example of use
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Structure learning for CBNs



Learning algorithms

• CPC a continuous PC algorithm based on an independence test
using Hellinger distance:

– M. Lasserre et al. (May 2020). “Constraint-Based Learning for
Non-Parametric Continuous Bayesian Networks”. In: FLAIRS 33 -
33rd Florida Artificial Intelligence Research Society Conference.
Miami, United States: AAAI, pp. 581–586

– M. Lasserre et al. (2021a). “Constraint-based learning for
non-parametric continuous bayesian networks”. In: Annals of
Mathematics and Artificial Intelligence, pp. 1–18

• CMIIC, an algorithm based on information theory:
– M. Lasserre et al. (2021b). “Learning Continuous High-Dimensional

Models using Mutual Information and Copula Bayesian Networks”.
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 13, pp. 12139–12146

• Improvement of the state of the art algorithm (CBIC) by using
mutual information to speed up the calculations.

14 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1
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F-score evolution : ALARM structure

2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

b-miic
g-miic
cpc
cbic

(a) Gaussian case
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(b) Student Case
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(c) Dirichlet case

F-score evolution for CBIC, CPC, G-CMIIC and B-CMIIC methods with respect to the
sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.
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SHD evolution : ALARM structure
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SHD evolution for CBIC, CPC, G-MIIC and B-MIIC methods with respect to the
sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.
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F-score evolution : random structures
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(a) Gaussian case
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(c) Dirichlet case

F-score evolution for CBIC, CPC, G-MIIC and B-MIIC methods with respect to the
dimension of the random structures. The results are averaged over 2 random
structures of same dimension and over 5 different samples of size m = 104.
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SHD evolution : random structures
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SHD evolution for CBIC, CPC, G-CMIIC and B-CMIIC methods with respect to the
dimension of the random structure. The results are averaged over 2 different structures
of same dimension and over 5 different samples of size m = 104.
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Temporal complexity
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Learning time in seconds for CBIC, CPC, G-CMIIC et B-CMIIC with respect to the
dimension of the random structures. The results are averaged over 2 different random
structures of same dimension and over 5 different samples of size m = 104.
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Thank you for your attention !
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