
Coupling aGrUM/pyAgrum with external
libraries: an application to Copula Bayesian
Networks

Marvin LASSERRE
supervised by Pierre-Henri WUILLEMIN (LIP6) and Régis LEBRUN (Airbus CRT)

directed by Christophe GONZALES (LIS)

March 18, 2022



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Learning high-dimensional probabilistic continuous models

• Goal: learning high dimensional continuous distributions with non-parametric
models,

• Why high-dimensional ? Because complex systems involve a large number of
variables,

• Why continuous ? Because in applications such as physics, engineering or
finance variables are often continuous,

• Why distributions ? Because we are faced with uncertainties (lack of
information, inherently uncertain problems),

• Why non-parametric ? Because parametric models such as Gaussian are too
restrictive for certain applications such as anomaly detection, risk analysis or
reliability analysis.

• Challenge 1: Various non-parametric models exists to estimate a density but
they are limited to a few dimensions (∼ 5 variables),

• Solution: Use of Probabilistic Graphical Models (PGM) to break the joint
distribution into a product of conditional distributions of lesser dimensions.

• Challenge 2: We want a probabilistic model with a density from which we can
sample points but continuous PGM are not satisfying,

• Solution: Use of the Empirical Bernstein Copula to parameterize graphical
models.

1 / 22



Copula Bayesian Networks
(CBNs)



Bayesian Networks

• Compact representation of a joint probability distribution over a set
of variables X using :

– A Directed Acyclic Graph (DAG),
– A set of Conditional Probability Distributions (CPD).

Discrete case : Conditional Probability Tables.

Continuous case : ???

2 / 22



Bayesian Networks

• Compact representation of a joint probability distribution over a set
of variables X using :

– A Directed Acyclic Graph (DAG),

– A set of Conditional Probability Distributions (CPD).

X1

X3

X2

X4

Il(G) = {(Xi ⊥ NDi |Pai )}.

Discrete case : Conditional Probability Tables.

Continuous case : ???

2 / 22



Bayesian Networks

• Compact representation of a joint probability distribution over a set
of variables X using :

– A Directed Acyclic Graph (DAG),
– A set of Conditional Probability Distributions (CPD).

X1

X3

X2

X4

f (X1) f (X2)

f (X3|X1,X2)

f (X4|X3)

f (x) =
n∏

i=1

f (xi |pai )

Discrete case : Conditional Probability Tables.

Continuous case : ???

2 / 22



Bayesian Networks

• Compact representation of a joint probability distribution over a set
of variables X using :

– A Directed Acyclic Graph (DAG),
– A set of Conditional Probability Distributions (CPD).

X1

X3

X2

X4

X1 f (X1)

0 0.1
1 0.9

X2 f (X2)

0 0.65
1 0.35

X1 X2 X3 f (X3|X1,X2)

0 0 0 0.15
0 0 1 0.85
0 1 0 0.2
0 1 1 0.8
1 0 0 0.1
1 0 1 0.9
1 1 0 0.4
1 1 1 0.6

X3 X4 f (X4|X3)

0 0 0.1
0 1 0.9
1 0 0.3
1 1 0.7

Discrete case : Conditional Probability Tables.

Continuous case : ???

2 / 22



Bayesian Networks

• Compact representation of a joint probability distribution over a set
of variables X using :

– A Directed Acyclic Graph (DAG),
– A set of Conditional Probability Distributions (CPD).

X1

X3

X2

X4

X1 f (X1)

0 0.1
1 0.9

X2 f (X2)

0 0.65
1 0.35

X1 X2 X3 f (X3|X1,X2)

0 0 0 0.15
0 0 1 0.85
0 1 0 0.2
0 1 1 0.8
1 0 0 0.1
1 0 1 0.9
1 1 0 0.4
1 1 1 0.6

X3 X4 f (X4|X3)

0 0 0.1
0 1 0.9
1 0 0.3
1 1 0.7

Discrete case : Conditional Probability Tables.

Continuous case : ???
2 / 22



Bayesian Networks and continuous data

• Discretization :
1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

• Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.

1989: f (y |x) = N (y ;β0 +
k∑

i=1
βixi , σ

2
y )

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

• Mixture models: Langseth et al. 2012; Cortijo et al. 2016
1. Good: Expressive models,
2. Bad: Hard to learn

3 / 22



Bayesian Networks and continuous data

• Discretization :
1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

• Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.

1989: f (y |x) = N (y ;β0 +
k∑

i=1
βixi , σ

2
y )

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

• Mixture models: Langseth et al. 2012; Cortijo et al. 2016
1. Good: Expressive models,
2. Bad: Hard to learn

3 / 22



Bayesian Networks and continuous data

• Discretization :
1. Limited to only a few bins for fast inference and learning algorithms.
2. Which one do we chose to minimize the loss of information ?
3. How to a continuous model from there ?

• Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.

1989: f (y |x) = N (y ;β0 +
k∑

i=1
βixi , σ

2
y )

1. Good: Fast inference and learning algorithms,
2. Bad: Strong model assumptions (Gaussian),

• Mixture models: Langseth et al. 2012; Cortijo et al. 2016
1. Good: Expressive models,
2. Bad: Hard to learn

3 / 22



Copulas

• U = (U1, · · · ,Un), continuous random variable over [0, 1]n,

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]n :

C (u1, . . . , un) = P(U1 ≤ u1, . . . ,Un ≤ un)

with uniform one-dimensional marginals :

C (1, . . . , ui , . . . , 1) = ui .

• If C is absolutely continuous, a copula density function c exists :

c(x) =
∂nC

∂x1 · · · ∂xn
(x1, · · · , xn)

4 / 22



Copulas

• U = (U1, · · · ,Un), continuous random variable over [0, 1]n,

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]n :

C (u1, . . . , un) = P(U1 ≤ u1, . . . ,Un ≤ un)

with uniform one-dimensional marginals :

C (1, . . . , ui , . . . , 1) = ui .

• If C is absolutely continuous, a copula density function c exists :

c(x) =
∂nC

∂x1 · · · ∂xn
(x1, · · · , xn)

4 / 22



Copulas

• U = (U1, · · · ,Un), continuous random variable over [0, 1]n,

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]n :

C (u1, . . . , un) = P(U1 ≤ u1, . . . ,Un ≤ un)

with uniform one-dimensional marginals :

C (1, . . . , ui , . . . , 1) = ui .

• If C is absolutely continuous, a copula density function c exists :

c(x) =
∂nC

∂x1 · · · ∂xn
(x1, · · · , xn)

4 / 22



Copulas

• U = (U1, · · · ,Un), continuous random variable over [0, 1]n,

Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on [0, 1]n :

C (u1, . . . , un) = P(U1 ≤ u1, . . . ,Un ≤ un)

with uniform one-dimensional marginals :

C (1, . . . , ui , . . . , 1) = ui .

• If C is absolutely continuous, a copula density function c exists :

c(x) =
∂nC

∂x1 · · · ∂xn
(x1, · · · , xn)

4 / 22



Sklar’s theorem

Theorem (Sklar, 1959)

For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Sklar’s theorem

Theorem (Sklar, 1959)
For any continuous distribution F over X1, · · · ,Xn, there exists a unique
copula function C , such that:

F (x1, · · · , xn) = C(F1(x1), · · · ,Fn(xn))

Moreover, if F is absolutely continuous,
f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))

n∏
i=1

fi (xi )

• Decomposition of the joint distribution into a copula function and a set of
marginals : more freedom for modeling.

• C encodes all the information about the dependencies between the
variables: interesting for independence tests.

▲! C becomes hard to model for high dimensions.

• Solution: use the BN framework over the copula function → Copula
Bayesian Networks (CBNs) (Elidan 2010)

5 / 22



Example : Gaussian copula

−3 −2 −1 0 1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.2

0.4

0.6

0.8

(a) Gaussian CDF

−3 −2 −1 0 1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0
0.1
0.2

0.3

0.4

0.5

0.6

0.7

(b) Gaussian PDF

• (X1,X2) ∽ N (µ,Σ), with µ =

Ç
0
0

å
and Σ =

Ç
1 0.45

0.45 0.25

å

•
Ä
U1 = Φ0,1(X1), U2 = Φ0, 1

2
(X2)
ä
∽ CN (R) with R =

Ç
1 0.9

0.9 1

å

6 / 22



Example : Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Copula function

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(b) Copula density function

• (X1,X2) ∽ N (µ,Σ), with µ =

Ç
0
0

å
and Σ =

Ç
1 0.45

0.45 0.25

å
•
Ä
U1 = Φ0,1(X1), U2 = Φ0, 1

2
(X2)
ä
∽ CN (R) with R =

Ç
1 0.9

0.9 1

å
6 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf )

which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)

• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : definition

Definition (Copula Bayesian Network, Elidan 2010)

• G : DAG over X ,

• ΘC : set of (local) copula densities ci ,

• Θf set of marginal densities fi

A Copula Bayesian Network (CBN) is a triplet (G,ΘC ,Θf ) which
encodes a joint density f (X ) that factorizes over G:

f (x1, · · · , xn) = c(F1(x1), · · · ,Fn(xn))
n∏

i=1

fi (xi ) (Sklar)

=
n∏

i=1

Ri (Fi (xi )|F (paXi
)) · fi (xi )

where Ri (ui |πi ) =
ci (ui ,πi )
ci (πi )

.

• Same graphical language than classical BNs (same independences)
• Classic algorithms can be adapted for structural learning.

7 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)

8 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

(c1(u1) ≡ 1, f1(x1)) (c2(u2) ≡ 1, f2(x2))

(c3(u3, u1, u2), f3(x3))

(c4(u4, u3), f4(x4))

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)

8 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

(c1(u1) ≡ 1, f1(x1)) (c2(u2) ≡ 1, f2(x2))

(c3(u3, u1, u2), f3(x3))

(c4(u4, u3), f4(x4))

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}

• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)

8 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

(c1(u1) ≡ 1, f1(x1)) (c2(u2) ≡ 1, f2(x2))

(c3(u3, u1, u2), f3(x3))

(c4(u4, u3), f4(x4))

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}

• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)

8 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

(c1(u1) ≡ 1, f1(x1)) (c2(u2) ≡ 1, f2(x2))

(c3(u3, u1, u2), f3(x3))

(c4(u4, u3), f4(x4))

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)

8 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

(c1(u1) ≡ 1, f1(x1)) (c2(u2) ≡ 1, f2(x2))

(c3(u3, u1, u2), f3(x3))

(c4(u4, u3), f4(x4))

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)

8 / 22



Copula Bayesian Networks : example

X1

X3

X2

X4

(c1(u1) ≡ 1, f1(x1)) (c2(u2) ≡ 1, f2(x2))

(c3(u3, u1, u2), f3(x3))

(c4(u4, u3), f4(x4))

• ΘC = {c1(u1) ≡ 1, c2(u2) ≡ 1, c3(u3, u1, u2), c4(u4, u3)}
• Θf = {f1(x1), f2(x2), f3(x3), f4(x4)}
• f (x1, x2, x3, x4) = [R1(F1(x1))f1(x1)][R2(F2(x2))f2(x2)]

× [R3(F3(x3)|F1(x1),F2(x2))f3(x3)]

× [R4(F4(x4)|F3(x3))f4(x4)]

• Parametric copulas: Gaussian, Student, Dirichlet, . . .

• Non-parametric copulas: Empirical Bernstein Copula (EBC)
8 / 22



Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )

9 / 22



Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )

9 / 22



Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )

9 / 22



Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

ĈB
K ,m(u) =

K∑
v1=0

· · ·
K∑

vn=0

Ĉm(
v1

K
, . . . ,

vn

K
)

n∏
i=1

Bvi ,K (ui ),

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )

9 / 22



Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

ĈB
K ,m(u) =

1
m

m∑
i=1

n∏
j=1

Irj [i ],sj [i ](uj )

with rj [i ] = ⌈Kuj [i ]⌉ , sj [i ] = K − rj [i ] + 1 and Iα,β the cumulative function of
beta distribution,

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )

9 / 22



Non-parametric estimation : empirical Bernstein copula

• Sample D = {x [1], . . . , x [m]} → Copula sample C = {u[1], . . . , u[m]}
with u[m] = (u1[m], . . . , un[m]), ui [m] = Fi (xi [m])

• Empirical copula:

Ĉm(u) =
1
m

m∑
j=1

n∏
i=1

1{Ui [j] ≤ ui}.

• Bernstein polynomial :

Bv,m(u) =
Äm
v

ä
uv (1 − u)m−v

• Empirical Bernstein copula (EBC) ĈB :

ĈB
K ,m(u) =

1
m

m∑
i=1

n∏
j=1

Irj [i ],sj [i ](uj )

with rj [i ] = ⌈Kuj [i ]⌉ , sj [i ] = K − rj [i ] + 1 and Iα,β the cumulative function of
beta distribution,

• Empirical Bernstein copula (EBC) density ĉB by differentiation:

ĉB(u) =
1
m

m∑
i=1

n∏
j=1

βrj [i ],sj [i ]
(uj )

9 / 22



Non-parametric estimation : empirical Bernstein copula

−2 −1 0 1 2

−5

0

5

(a) Gaussian sample

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Gaussian copula density sample

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Gaussian copula density sample

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

(b) Bernstein copula: m = 102

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

(b) Bernstein copula: m = 103

10 / 22



Non-parametric estimation : empirical Bernstein copula

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
0.8

1.0

1
2
3
4
5

(a) Gaussian copula density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b) Bernstein copula: m = 104

10 / 22



The otagrum module



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?

• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?

• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: an open source library to learn CBNs

Two similar libraries (C++, python wrappers, open source):

• OpenTURNS deals with copulas and continuous distributions
(available on GitHub, pip and conda).

• aGrUM deals with (discrete) graphical models (available on GitLab,
pip and conda).

A module to rule them all : otagrum.

What does it contain ?
• A CBN class,

• Several learning algorithms,

• A detailed documentation.

Where to find it ?
• Module : openturns/otagrum (GitHub)

• Experiments : MLasserre/otagrum-experiments (GitHub)

11 / 22



otagrum: installation

• Online website : https://openturns.github.io/otagrum/master/index.html

• Can be easily installed using conda:
$ conda install -c conda-forge otagrum

• Or manually to have the development version.
12 / 22

https://openturns.github.io/otagrum/master/index.html


otagrum: an example of use

13 / 22



otagrum: an example of use

13 / 22



otagrum: an example of use

13 / 22



otagrum: an example of use

13 / 22



otagrum: an example of use

13 / 22



otagrum: an example of use

13 / 22



Structure learning for CBNs



Learning algorithms

• CPC a continuous PC algorithm based on an independence test
using Hellinger distance:

– M. Lasserre et al. (May 2020). “Constraint-Based Learning for
Non-Parametric Continuous Bayesian Networks”. In: FLAIRS 33 -
33rd Florida Artificial Intelligence Research Society Conference.
Miami, United States: AAAI, pp. 581–586

– M. Lasserre et al. (2021a). “Constraint-based learning for
non-parametric continuous bayesian networks”. In: Annals of
Mathematics and Artificial Intelligence, pp. 1–18

• CMIIC, an algorithm based on information theory:
– M. Lasserre et al. (2021b). “Learning Continuous High-Dimensional

Models using Mutual Information and Copula Bayesian Networks”.
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 13, pp. 12139–12146

• Improvement of the state of the art algorithm (CBIC) by using
mutual information to speed up the calculations.

14 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.→ A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.→ A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

HYPOVOLEMIA

STROKEVOLUMELVEDVOLUME

COCVPPCWP

LVFAILURE

HISTORY

BP

ERRLOWOUTPUT

HRBP

ERRCAUTER

HRSAT HREKG

INSUFFANESTH

CATECHOL

HR

ANAPHYLAXIS

TPR

KINKEDTUBE

VENTLUNGPRESS

MINVOLVENTALV

EXPCO2

FIO2

PVSAT

SAO2

PULMEMBOLUS

PAP SHUNT

INTUBATION

ARTCO2

DISCONNECT

VENTTUBE

MINVOLSET

VENTMACH

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.→ A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

n_18

n_21

n_2

n_17

n_16

n_14

n_10

n_5

n_19

n_12

n_1

n_9

n_15

n_13

n_8 n_20

n_4

n_7

n_3

n_0

n_11n_6

Number of nodes : n =⇒ Number of arcs : ⌊1.2 × n⌋

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.→ Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.→ Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.→ Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.→ Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.→ Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.→ A structure is learned from the generated data,
5.

→

Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.→ Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.→ Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.→ Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.→ Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



Comparison method

1.

→

A reference structure is chosen : ALARM or random,
2.

→

Copulas are parametrized : Gaussian, Student or Dirichlet,
3.

→

Samples are generated from the CBN : forward-sampling,
4.

→

A structure is learned from the generated data,
5.→ Structural scores are computed : F-score et SHD.

• F-score : skeleton (undirected structure)

– Skeleton perfectly retrieved : F-score = 1

• Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)

– CPDAG perfectly retrieved : SHD = 0

15 / 22



F-score evolution : ALARM structure

2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

b-miic
g-miic
cpc
cbic

(a) Gaussian case

2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

b-miic
g-miic
cpc
cbic

(b) Student Case

2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

b-miic
g-miic
cpc
cbic

(c) Dirichlet case

F-score evolution for CBIC, CPC, G-CMIIC and B-CMIIC methods with respect to the
sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.

16 / 22



SHD evolution : ALARM structure

5000 10000 15000
0

20

40

60

80

b-miic
g-miic
cpc
cbic

(a) Gaussian case

5000 10000 15000
0

20

40

60

80

b-miic
g-miic
cpc
cbic

(b) Student case

5000 10000 15000
0

20

40

60

80

b-miic
g-miic
cpc
cbic

(c) Dirichlet case

SHD evolution for CBIC, CPC, G-MIIC and B-MIIC methods with respect to the
sample size. For a given size, the results are averaged over 5 different samples
generated from the ALARM structure.

17 / 22



F-score evolution : random structures

25 50 75
0.7

0.8

0.9

1.0

cpc
cbic

(a) Gaussian case

25 50 75
0.7

0.8

0.9

1.0

g-cmiic
b-cmiic

(b) Student case

25 50 75
0.7

0.8

0.9

1.0

(c) Dirichlet case

F-score evolution for CBIC, CPC, G-MIIC and B-MIIC methods with respect to the
dimension of the random structures. The results are averaged over 2 random
structures of same dimension and over 5 different samples of size m = 104.

18 / 22



SHD evolution : random structures

25 50 75
0

25

50

75

100

cpc
cbic

(a) Gaussian case

25 50 75
0

25

50

75

100

g-cmiic
b-cmiic

(b) Student case

25 50 75
0

25

50

75

100

(c) Dirichlet case

SHD evolution for CBIC, CPC, G-CMIIC and B-CMIIC methods with respect to the
dimension of the random structure. The results are averaged over 2 different structures
of same dimension and over 5 different samples of size m = 104.

19 / 22



Temporal complexity

2 8 32
10−3

10−1

101

103

105

cpc
cbic

(a) Gaussian case

2 8 32
10−3

10−1

101

103

105

g-cmiic
b-cmiic

(b) Student case

2 8 32
10−3

10−1

101

103

105

(c) Dirichlet case

Learning time in seconds for CBIC, CPC, G-CMIIC et B-CMIIC with respect to the
dimension of the random structures. The results are averaged over 2 different random
structures of same dimension and over 5 different samples of size m = 104.

20 / 22



Thank you for your attention !

20 / 22



Bibliography



Cortijo, S. and C. Gonzales (2016). “Bayesian networks with
conditional truncated densities”. In: The Twenty-Ninth International
Flairs Conference (cit. on pp. 17–19).
Elidan, G. (2010). “Copula bayesian networks”. In: Advances in
neural information processing systems, pp. 559–567 (cit. on
pp. 24–31, 34–41).
Langseth, H., T. D. Nielsen, R. Rumı, and A. Salmerón (2012).
“Mixtures of truncated basis functions”. In: International Journal of
Approximate Reasoning 53.2, pp. 212–227 (cit. on pp. 17–19).
Lasserre, M., R. Lebrun, and P.-H. Wuillemin (May 2020).
“Constraint-Based Learning for Non-Parametric Continuous Bayesian
Networks”. In: FLAIRS 33 - 33rd Florida Artificial Intelligence
Research Society Conference. Miami, United States: AAAI,
pp. 581–586 (cit. on p. 81).

21 / 22



Lasserre, M., R. Lebrun, and P.-H. Wuillemin (2021a).
“Constraint-based learning for non-parametric continuous bayesian
networks”. In: Annals of Mathematics and Artificial Intelligence,
pp. 1–18 (cit. on p. 81).
Lasserre, M., R. Lebrun, and P.-H. Wuillemin (2021b). “Learning
Continuous High-Dimensional Models using Mutual Information and
Copula Bayesian Networks”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 35. 13, pp. 12139–12146 (cit. on p. 81).
Lauritzen, S. L. and N. Wermuth (1989). “Graphical models for
associations between variables, some of which are qualitative and
some quantitative”. In: The annals of Statistics, pp. 31–57 (cit. on
pp. 17–19).
Nelsen, R. B. (2007). An introduction to copulas. Springer Science &
Business Media (cit. on pp. 20–23).

22 / 22


	Copula Bayesian Networks (CBNs)
	The otagrum module
	Structure learning for CBNs
	Bibliography

