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1 introduction
short history
components
opensource project
next

2 introspection : focus on 3 elementary Components

3 illustration
The model (Liessman Eric Sturlaugson, Montana, 2014)

dynamic Bayesian Network
Châıne de Markov à temps continu
CTBN

Quick implementation of CTBNs using pyAgrum
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aGrUM/pyAgrum
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aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)

1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.
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aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal
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aGrUM/pyAgrum as
OpenSource project
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aGrUM/pyAgrum on the web
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aGrUM/pyAgrum on gitlab.com
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pyAgrum on pipy/anaconda/binder/readthedocs
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Code quality in aGrUM/pyAgrum : documentation
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Code quality in aGrUM/pyAgrum : tests
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Code quality in aGrUM/pyAgrum : continuous integration

CI on different platforms
Deployment (to be continued)

Nightly build (and tests)
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Some stats

Visits (readthedocs, agrum.org, notebooks)

Téléchargements
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Téléchargements

Introduction, introspection, illustration 13 / 52



Some stats

Visits (readthedocs, agrum.org, notebooks)
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And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty ( ?), consortium ( ?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?
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Introspection : focus on 3 elementary components
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Introspection : focus on 3 elementary components

Core

Random
variables

High-
dimensional

proba.

Graphs

pyAgrum
(python(3))

Introduction, introspection, illustration 16 / 52



Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.
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Discrete variables as list of labels

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see below),

IntegerVariable : list of non-contiguous integer labels.
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A shared and simple API for all Discrete Variables
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Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Very compact definition of a graph : not even explicit set of nodes

Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

the nodes (unsigned long) are called NodeId

Several type of graphs :

DiGraph

DAG (Directed Acyclic Graph)

UndiGraph (and CliqueGraph)

MixedGraph
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API for graphs

node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode(a)

arcs, edges : addEdge, eraseEdge, etc.
accessors : parents,children,neighbour, etc.
algorithms : topologicalOrder, moralGraph, connectedComponents, etc.
visualisation : toDot() (used by pyAgrum.lib.notebook for instance)
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Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra
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API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential
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Potential for probabilities

P(A,B,C ,D) = P(A) ∗ P(D) ∗ P(B |A,D) ∗ P(C |B)
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Potential for probabilities (2)

P(D |C ) =
P(D,C )

P(C )
=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)
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Using these components to build new model in pyAgrum

Two models exist only in pyAgrum and has been developped mainly from those
components :

dynamic Bayesian Network Causal model
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dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).
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dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.
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Markov Chain and dynamic Bayesian network

1 3

2

0.25

0.75

0.25

0.25

0.25
0.50.5

0.25

P(X n | X n−1) =

 0.25 0 0.75
0.25 0.25 0.5
0.25 0.5 0.25



Markov chain
a discrete variable (X n) (at time n).

Parameters for this model :

Initial condition : P(XO)
transition probabilities : P(X n | X n−1)

Equivalent dynamic Bayesian network :

dBN :
X3X2X1X0

· · · 2TBN :
X0 Xn

Could we do the same with continuous time ?
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Continuous-Time Markov Process

Dynamic processus dynamique verifying :

a discrete variable

a transition from a state to another can happen any time,

Continuous time Markov property :

∀s > r , ∀t > 0,P(X (s + t)|X (s)),X (r)) = P(X (s + t)|X (s)))

Exponential distribution

D ∼ Exp(λ)

Cumulative distribution function
∀d > 0,F (d) = 1 − e−λd

E(D) = λ−1

σ(D) = λ−1
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Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y ) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .
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Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i )) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52



Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i )) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52



Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i )) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52



Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i )) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52



Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i )) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52



Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i )) puis draw((pi,j , j 6= i)).
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factorized CTMC : CTBN

CTBN

(X,G , (QX )X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.
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CTBN - properties

Arc always temporal (which allows ’cycle’) :
A → B ⇐⇒ P(Bt+δt | At , · · · ) = · · ·
A Continuous-Time Bayseian network is a joint continuous-time
Markov process.
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From a CTBN to the Markov process : amalgamation

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process.
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Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX )

2 xt+1 = Draw(QX )

3 Note (Xt ,Dt)

4 loop until stop
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Implémentation (rapide)
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Goal1 : way to define a CTBN
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Goal2 : implement amalgamation
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Goal3 : implement the 2 ’inference’
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Classes to code

CIM from (gum.Potential)

CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)
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CIM

: wrapper de Potential
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CIM : Amalgamation
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Implementations

CIM : 210 lines

CTBN

Inférence

Simple
Sampling
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CTBN

Mainly : synchronization of 3 very
differents objects :

oriented graph
(gum.DiGraph),

Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

CIMs in a dictionnary.
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Implementations
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Inférence simple
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Inférence simple
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Implémentations

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling
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Forward Sampling
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Forward Sampling
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Forward Sampling
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Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.
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And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty ( ?), consortium ( ?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?
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