
Introduction, introspection, illustration

Pierre-Henri WUILLEMIN

LIP6
pierre-henri.wuillemin@lip6.fr

1 introduction
short history
components
opensource project
next

2 introspection : focus on 3 elementary Components

3 illustration
The model (Liessman Eric Sturlaugson, Montana, 2014)

dynamic Bayesian Network
Châıne de Markov à temps continu
CTBN

Quick implementation of CTBNs using pyAgrum

Introduction, introspection, illustration 2 / 52

aGrUM/pyAgrum

Introduction, introspection, illustration 3 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)

1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library

(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).

2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !

3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).

4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us

(i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved

but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :

1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).

2 Useful, accessible and improvable for as many people as
possible.

3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.

3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM’s goals (as a tool for laboratory)
1 PGM as a library(and not as a software ⇒ No IDE).
2 C++ ! ! !
3 Optimized (as much as possible).
4 Usable and improvable by others than us (i.e. students).

Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

pyAgrum as a solution.

(< 6 year) pyAgrum’s goals :
1 Wrapper of aGrUM (package, optimized, etc.).
2 Useful, accessible and improvable for as many people as

possible.
3 Public, documented and deployed as widely as possible.

repository : svn→local git→local gitlab→gitlab

Open Source : GPL then LGPL.

Introduction, introspection, illustration 4 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 5 / 52

aGrUM/pyAgrum as
OpenSource project

Introduction, introspection, illustration 6 / 52

aGrUM/pyAgrum on the web

Introduction, introspection, illustration 7 / 52

aGrUM/pyAgrum on gitlab.com

Introduction, introspection, illustration 8 / 52

pyAgrum on pipy/anaconda/binder/readthedocs

Introduction, introspection, illustration 9 / 52

pyAgrum on pipy/anaconda/binder/readthedocs

Introduction, introspection, illustration 9 / 52

pyAgrum on pipy/anaconda/binder/readthedocs

Introduction, introspection, illustration 9 / 52

pyAgrum on pipy/anaconda/binder/readthedocs

Introduction, introspection, illustration 9 / 52

Code quality in aGrUM/pyAgrum : documentation

Introduction, introspection, illustration 10 / 52

Code quality in aGrUM/pyAgrum : documentation

Introduction, introspection, illustration 10 / 52

Code quality in aGrUM/pyAgrum : documentation

Introduction, introspection, illustration 10 / 52

Code quality in aGrUM/pyAgrum : documentation

Introduction, introspection, illustration 10 / 52

Code quality in aGrUM/pyAgrum : tests

Introduction, introspection, illustration 11 / 52

Code quality in aGrUM/pyAgrum : continuous integration

CI on different platforms
Deployment (to be continued)

Nightly build (and tests)

Introduction, introspection, illustration 12 / 52

Some stats

Visits (readthedocs, agrum.org, notebooks)

Téléchargements

Introduction, introspection, illustration 13 / 52

Some stats

Visits (readthedocs, agrum.org, notebooks)

Téléchargements

Introduction, introspection, illustration 13 / 52

Some stats

Visits (readthedocs, agrum.org, notebooks)

Téléchargements

Introduction, introspection, illustration 13 / 52

Some stats

Visits (readthedocs, agrum.org, notebooks)

Téléchargements

Introduction, introspection, illustration 13 / 52

Some stats

Visits (readthedocs, agrum.org, notebooks)

Téléchargements

Introduction, introspection, illustration 13 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction

gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration

communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 14 / 52

Introspection : focus on 3 elementary components

aGrUM
(C++20)

Core

Random
variables

High-
dimensional

proba.

Graphs

Bayesian
networks

Model

Inference

Statistical
learning

Advanced
Models

FMDP

Credal
networks

Influence
diagrams

Markov
networks

PRM

Experimental

pyAgrum
(python(3))

pyAgrum.lib notebook

dynamicBN

etc.

pyAgrum.skbn

pyAgrum.causal

Introduction, introspection, illustration 15 / 52

Introspection : focus on 3 elementary components

Core

Random
variables

High-
dimensional

proba.

Graphs

pyAgrum
(python(3))

Introduction, introspection, illustration 16 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, · · · , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, o, u, y , X is represented by an array :

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 17 / 52

Discrete variables as list of labels

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 18 / 52

Discrete variables as list of labels

The kind of labels defines 4 different types of discrete variables :

LabelizedVariable : list of generic labels (as string),

RangeVariable : list of continguous integer labels,

DiscretizedVariable : list of labels defined by a list of float ticks (see below),

IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 18 / 52

Introduction, introspection, illustration 19 / 52

A shared and simple API for all Discrete Variables

Introduction, introspection, illustration 20 / 52

A shared and simple API for all Discrete Variables

Introduction, introspection, illustration 20 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Very compact definition of a graph : not even explicit set of nodes

Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

the nodes (unsigned long) are called NodeId

Several type of graphs :

DiGraph

DAG (Directed Acyclic Graph)

UndiGraph (and CliqueGraph)

MixedGraph

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Very compact definition of a graph : not even explicit set of nodes

Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

the nodes (unsigned long) are called NodeId

Several type of graphs :

DiGraph

DAG (Directed Acyclic Graph)

UndiGraph (and CliqueGraph)

MixedGraph

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Very compact definition of a graph : not even explicit set of nodes

Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

the nodes (unsigned long) are called NodeId

Several type of graphs :

DiGraph

DAG (Directed Acyclic Graph)

UndiGraph (and CliqueGraph)

MixedGraph

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Very compact definition of a graph : not even explicit set of nodes

Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

the nodes (unsigned long) are called NodeId

Several type of graphs :

DiGraph

DAG (Directed Acyclic Graph)

UndiGraph (and CliqueGraph)

MixedGraph

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Very compact definition of a graph : not even explicit set of nodes

Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

the nodes (unsigned long) are called NodeId

Several type of graphs :

DiGraph

DAG (Directed Acyclic Graph)

UndiGraph (and CliqueGraph)

MixedGraph

Introduction, introspection, illustration 21 / 52

API for graphs

node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode(a)

arcs, edges : addEdge, eraseEdge, etc.
accessors : parents,children,neighbour, etc.
algorithms : topologicalOrder, moralGraph, connectedComponents, etc.
visualisation : toDot() (used by pyAgrum.lib.notebook for instance)

Introduction, introspection, illustration 22 / 52

API for graphs

node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode(a)
arcs, edges : addEdge, eraseEdge, etc.

accessors : parents,children,neighbour, etc.
algorithms : topologicalOrder, moralGraph, connectedComponents, etc.
visualisation : toDot() (used by pyAgrum.lib.notebook for instance)

Introduction, introspection, illustration 22 / 52

API for graphs

node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode(a)
arcs, edges : addEdge, eraseEdge, etc.
accessors : parents,children,neighbour, etc.
algorithms : topologicalOrder, moralGraph, connectedComponents, etc.
visualisation : toDot() (used by pyAgrum.lib.notebook for instance)

Introduction, introspection, illustration 22 / 52

API for graphs

node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode(a)
arcs, edges : addEdge, eraseEdge, etc.
accessors : parents,children,neighbour, etc.
algorithms : topologicalOrder, moralGraph, connectedComponents, etc.
visualisation : toDot() (used by pyAgrum.lib.notebook for instance)

Introduction, introspection, illustration 22 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f = g + h

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f (, ,) = g(, ,) + h(,)

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f (, ,) = g(, ,) + h(,)

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f (a, b, c) = g(b, a, c) + h(b, c)

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f (a, b, c) = g(b, a, c) + h(b, c)

Introduction, introspection, illustration 23 / 52

API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential

Introduction, introspection, illustration 24 / 52

API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential

Introduction, introspection, illustration 24 / 52

API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential

Introduction, introspection, illustration 24 / 52

API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential

Introduction, introspection, illustration 24 / 52

API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential

Introduction, introspection, illustration 24 / 52

API for Potential

Quite complex API.

Creation and operations on Potential

Methods on Potential

Introduction, introspection, illustration 24 / 52

Potential for probabilities

P(A,B,C ,D) = P(A) ∗ P(D) ∗ P(B |A,D) ∗ P(C |B)

Introduction, introspection, illustration 25 / 52

Potential for probabilities

P(A,B,C ,D) = P(A) ∗ P(D) ∗ P(B |A,D) ∗ P(C |B)

Introduction, introspection, illustration 25 / 52

Potential for probabilities

P(A,B,C ,D) = P(A) ∗ P(D) ∗ P(B |A,D) ∗ P(C |B)

Introduction, introspection, illustration 25 / 52

Potential for probabilities

P(A,B,C ,D) = P(A) ∗ P(D) ∗ P(B |A,D) ∗ P(C |B)

Introduction, introspection, illustration 25 / 52

Potential for probabilities

P(A,B,C ,D) = P(A) ∗ P(D) ∗ P(B |A,D) ∗ P(C |B)

Introduction, introspection, illustration 25 / 52

Potential for probabilities (2)

P(D |C) =
P(D,C)

P(C)
=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

P(D |C)

=
P(D,C)

P(C)
=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

P(D |C) =
P(D,C)

P(C)

=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

P(D |C) =
P(D,C)

P(C)
=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

P(D |C) =
P(D,C)

P(C)
=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

P(D |C) =
P(D,C)

P(C)
=

∑
A,B P(A,B,C ,D)∑

A,B,D P(A,B,C ,D)

Introduction, introspection, illustration 26 / 52

Using these components to build new model in pyAgrum

Two models exist only in pyAgrum and has been developped mainly from those
components :

dynamic Bayesian Network Causal model

Introduction, introspection, illustration 27 / 52

Using these components to build new model in pyAgrum

Two models exist only in pyAgrum and has been developped mainly from those
components :

dynamic Bayesian Network Causal model

Introduction, introspection, illustration 27 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N

for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :

P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :

P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the

time t and by i : X(t) = X
(t)
1 , · · · ,X (t)

N for which those properties hold :

Markov property :
P(X(t) | X(0), · · · ,X(t−1)) = P(X(t) | X(t−1)),

Homogeneity :
P(X(t) | X(t−1)) = · · · = P(X(1) | X(0))).

2 3 4 · · ·

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X5 X5 X5 X5 X5

10

Introduction, introspection, illustration 28 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5) = P(x

(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5)

= P(x
(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5) = P(x

(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5) = P(x

(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5) = P(x

(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

1024 versus 4+16+16+8+2=46 ! ! P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5) = P(x

(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

1024 versus 4+16+16+8+2=46 ! ! P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

2-TBN
A dynamic Bayesian network is defined by

initial distributions (P(X (0)),

the transition between the variables at time t − 1 and the same varaibles at
time t (timeslices).

t = 0 t | (t − 1)

X0
1

X0
2

X0
3

X0
4

X0
5

Xt
1

Xt
2

Xt
3

Xt
4

Xt
5

P(x
(t)
1 , . . . , x

(t)
5 | x

(t−1)
1 , . . . , x

(t−1)
5) = P(x

(t)
1 | x(t−1))

P(x
(t)
2 | x

(t−1)
1 , x

(t−1)
2 , x

(t−1)
3)

P(x
(t)
3 | x

(t−1)
2 , x

(t−1)
3 , x

(t−1)
4)

1024 versus 4+16+16+8+2=46 ! ! P(x
(t)
4 | x

(t−1)
4 , x

(t−1)
5)

P(x
(t)
5)

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration 29 / 52

Markov Chain and dynamic Bayesian network

1 3

2

0.25

0.75

0.25

0.25

0.25
0.50.5

0.25

P(X n | X n−1) =

 0.25 0 0.75
0.25 0.25 0.5
0.25 0.5 0.25



Markov chain
a discrete variable (X n) (at time n).

Parameters for this model :

Initial condition : P(XO)
transition probabilities : P(X n | X n−1)

Equivalent dynamic Bayesian network :

dBN :
X3X2X1X0

· · · 2TBN :
X0 Xn

Could we do the same with continuous time ?

Introduction, introspection, illustration 30 / 52

Markov Chain and dynamic Bayesian network

1 3

2

0.25

0.75

0.25

0.25

0.25
0.50.5

0.25

P(X n | X n−1) =

 0.25 0 0.75
0.25 0.25 0.5
0.25 0.5 0.25



Markov chain
a discrete variable (X n) (at time n).

Parameters for this model :

Initial condition : P(XO)
transition probabilities : P(X n | X n−1)

Equivalent dynamic Bayesian network :

dBN :
X3X2X1X0

· · · 2TBN :
X0 Xn

Could we do the same with continuous time ?

Introduction, introspection, illustration 30 / 52

Markov Chain and dynamic Bayesian network

1 3

2

0.25

0.75

0.25

0.25

0.25
0.50.5

0.25

P(X n | X n−1) =

 0.25 0 0.75
0.25 0.25 0.5
0.25 0.5 0.25



Markov chain
a discrete variable (X n) (at time n).

Parameters for this model :

Initial condition : P(XO)
transition probabilities : P(X n | X n−1)

Equivalent dynamic Bayesian network :

dBN :
X3X2X1X0

· · · 2TBN :
X0 Xn

Could we do the same with continuous time ?

Introduction, introspection, illustration 30 / 52

Markov Chain and dynamic Bayesian network

1 3

2

0.25

0.75

0.25

0.25

0.25
0.50.5

0.25

P(X n | X n−1) =

 0.25 0 0.75
0.25 0.25 0.5
0.25 0.5 0.25



Markov chain
a discrete variable (X n) (at time n).

Parameters for this model :

Initial condition : P(XO)
transition probabilities : P(X n | X n−1)

Equivalent dynamic Bayesian network :

dBN :
X3X2X1X0

· · · 2TBN :
X0 Xn

Could we do the same with continuous time ?

Introduction, introspection, illustration 30 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :

a discrete variable

a transition from a state to another can happen any time,

Continuous time Markov property :

∀s > r , ∀t > 0,P(X (s + t)|X (s)),X (r)) = P(X (s + t)|X (s)))

Exponential distribution

D ∼ Exp(λ)

Cumulative distribution function
∀d > 0,F (d) = 1 − e−λd

E(D) = λ−1

σ(D) = λ−1

Introduction, introspection, illustration 31 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :

a discrete variable

a transition from a state to another can happen any time,

Continuous time Markov property :

∀s > r , ∀t > 0,P(X (s + t)|X (s)),X (r)) = P(X (s + t)|X (s)))

Exponential distribution

D ∼ Exp(λ)

Cumulative distribution function
∀d > 0,F (d) = 1 − e−λd

E(D) = λ−1

σ(D) = λ−1

Introduction, introspection, illustration 31 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :

a discrete variable

a transition from a state to another can happen any time,

Continuous time Markov property :

∀s > r , ∀t > 0,P(X (s + t)|X (s)),X (r)) = P(X (s + t)|X (s)))

Exponential distribution

D ∼ Exp(λ)

Cumulative distribution function
∀d > 0,F (d) = 1 − e−λd

E(D) = λ−1

σ(D) = λ−1

Introduction, introspection, illustration 31 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :

a discrete variable

a transition from a state to another can happen any time,

Continuous time Markov property :

∀s > r , ∀t > 0,P(X (s + t)|X (s)),X (r)) = P(X (s + t)|X (s)))

Exponential distribution

D ∼ Exp(λ)

Cumulative distribution function
∀d > 0,F (d) = 1 − e−λd

E(D) = λ−1

σ(D) = λ−1

Introduction, introspection, illustration 31 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ∼ Exp(λ),Y ∼ Exp(µ),X |= Y ⇒ min(X ,Y) ∼ Exp(λ+ µ)

Continuous Time Markov Chain

(Xt ∈ x1, · · · , xn)t≥0 CdMTC is defined by

P(X0)

∀i , j ≥ n, qi,j tels que
1 qi,i ∈ R−

2 ∀i 6= j , qi,j ∈ R+

3 ∀i ,
∑

j qi,j = 0

QX =

 −0.21 0.20 0.01
0.05 −0.10 0.05
0.01 0.20 −0.21


intensity matrix

qi,j is the parameter of the exponential distribution controlling the transition from state i to state j
−qi,i is the paramter of the exponential distribution controlling a transition from state i .

Introduction, introspection, illustration 32 / 52

Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i)) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52

Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i)) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52

Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i)) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52

Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i)) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52

Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i)) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52

Properties

(Xt ∈ x1, · · · , xn)t≥0 CTMC :

P(X0)

QX = (qi,j)i≤n,j≤n intensity matrix

Properties

pi,j =
qi,j
−qi,i

is the probability of transition from xi to xj

P(Xt) = P(XO) · exp(QX t) with exp(M) =
∑∞

n=0
Mn

n!

Convergence

With some good conditions (ergodicity), P(Xt)−→
t→∞P(X ∗)

Forward sampling :
draw(exp(−qi,i)) puis draw((pi,j , j 6= i)).

Convergence of P(Xt) = P(X0)exp(QX t)−→
t→∞P∗

Introduction, introspection, illustration 33 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X

(not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

CTBN

(X,G , (QX)X∈X) Continuous-Time Bayesian Network if

X = (X1, · · · ,Xn) continuous-time Markov process

G oriented graph on X (not DAG)

∀X ∈ X,QX conditional intensity matrix (CIM)

QX is a CIM ⇐⇒ ∀ <paX>,QX |<paX> intensity matrix.

Introduction, introspection, illustration 34 / 52

CTBN - properties

Arc always temporal (which allows ’cycle’) :
A → B ⇐⇒ P(Bt+δt | At , · · ·) = · · ·
A Continuous-Time Bayseian network is a joint continuous-time
Markov process.

Introduction, introspection, illustration 35 / 52

CTBN - properties

Arc always temporal (which allows ’cycle’) :
A → B ⇐⇒ P(Bt+δt | At , · · ·) = · · ·

A Continuous-Time Bayseian network is a joint continuous-time
Markov process.

Introduction, introspection, illustration 35 / 52

CTBN - properties

Arc always temporal (which allows ’cycle’) :
A → B ⇐⇒ P(Bt+δt | At , · · ·) = · · ·
A Continuous-Time Bayseian network is a joint continuous-time
Markov process.

Introduction, introspection, illustration 35 / 52

From a CTBN to the Markov process : amalgamation

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process.

Introduction, introspection, illustration 36 / 52

From a CTBN to the Markov process : amalgamation

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process.

Introduction, introspection, illustration 36 / 52

From a CTBN to the Markov process : amalgamation

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process.

Introduction, introspection, illustration 36 / 52

From a CTBN to the Markov process : amalgamation

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process.

Introduction, introspection, illustration 36 / 52

From a CTBN to the Markov process : amalgamation

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process.

Introduction, introspection, illustration 36 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling

1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling
1 (Xt+1,Dt) = (argmin,min)X∈CTBNDraw(QX)

2 xt+1 = Draw(QX)

3 Note (Xt ,Dt)

4 loop until stop

Introduction, introspection, illustration 37 / 52

Implémentation (rapide)

Introduction, introspection, illustration 38 / 52

Goal1 : way to define a CTBN

Introduction, introspection, illustration 39 / 52

Goal1 : way to define a CTBN

Introduction, introspection, illustration 39 / 52

Goal2 : implement amalgamation

Introduction, introspection, illustration 40 / 52

Goal2 : implement amalgamation

Introduction, introspection, illustration 40 / 52

Goal3 : implement the 2 ’inference’

Introduction, introspection, illustration 41 / 52

Goal3 : implement the 2 ’inference’

Introduction, introspection, illustration 41 / 52

Goal3 : implement the 2 ’inference’

Introduction, introspection, illustration 41 / 52

Classes to code

CIM from (gum.Potential)

CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)

Introduction, introspection, illustration 42 / 52

Classes to code

CIM

from (gum.Potential)

CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)

Introduction, introspection, illustration 42 / 52

Classes to code

CIM from (gum.Potential)

CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)

Introduction, introspection, illustration 42 / 52

Classes to code

CIM from (gum.Potential)

CTBN,

(gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)

Introduction, introspection, illustration 42 / 52

Classes to code

CIM from (gum.Potential)

CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)

Introduction, introspection, illustration 42 / 52

Classes to code

CIM from (gum.Potential)

CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Convergence

’Exact’ method (exp(IM))
Sampling (Forward Sampling)

Introduction, introspection, illustration 42 / 52

CIM

: wrapper de Potential

Introduction, introspection, illustration 43 / 52

CIM

: wrapper de Potential

Introduction, introspection, illustration 43 / 52

CIM : wrapper de Potential

Introduction, introspection, illustration 43 / 52

CIM : Amalgamation

Introduction, introspection, illustration 44 / 52

CIM : Amalgamation

Introduction, introspection, illustration 44 / 52

CIM : Amalgamation

Introduction, introspection, illustration 44 / 52

Implementations

CIM : 210 lines

CTBN

Inférence

Simple
Sampling

Introduction, introspection, illustration 45 / 52

Implementations

CIM : 210 lines

CTBN

Inférence

Simple
Sampling

Introduction, introspection, illustration 45 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

oriented graph
(gum.DiGraph),

Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

CIMs in a dictionnary.

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

oriented graph
(gum.DiGraph),

Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

CIMs in a dictionnary.

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

oriented graph
(gum.DiGraph),

Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

CIMs in a dictionnary.

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

oriented graph
(gum.DiGraph),

Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

CIMs in a dictionnary.

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

oriented graph
(gum.DiGraph),

Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

CIMs in a dictionnary.

Introduction, introspection, illustration 46 / 52

Implementations

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple
Sampling

Introduction, introspection, illustration 47 / 52

Implementations

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple
Sampling

Introduction, introspection, illustration 47 / 52

Inférence simple

Introduction, introspection, illustration 48 / 52

Inférence simple

Introduction, introspection, illustration 48 / 52

Implémentations

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling

Introduction, introspection, illustration 49 / 52

Forward Sampling

Introduction, introspection, illustration 50 / 52

Forward Sampling

Introduction, introspection, illustration 50 / 52

Forward Sampling

Introduction, introspection, illustration 50 / 52

Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration 51 / 52

Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration 51 / 52

Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration 51 / 52

Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration 51 / 52

Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration 51 / 52

Conclusion

CIM : 210 lines

CTBN : 190 lines

Inférence

Simple : 23 lines
Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration 51 / 52

And now ?

aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Many users imply many responsabilities

Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
Structuration
communauty (?), consortium (?)
Scientific orientation ?

models
algorithms
scientific committee
?

Development orientation ?

weaknesses, strengths
missing features
Ragrum, JSagrum
Steering committee
?

Introduction, introspection, illustration 52 / 52

	Plan
	introduction
	short history
	components
	opensource project
	next

	introspection : focus on 3 elementary Components
	illustration
	The model (Liessman Eric Sturlaugson, Montana, 2014)
	Quick implementation of CTBNs using pyAgrum

