Introduction, introspection, illustration

Pierre-Henri WUILLEMIN

LIP6
pierre-henri.wuillemin@lip6.fr

© introduction
@ short history
@ components
@ opensource project
@ next

© introspection : focus on 3 elementary Components

© illustration

@ The model (Liessman Eric Sturlaugson, Montana, 2014)
@ dynamic Bayesian Network
@ Chaine de Markov a temps continu
@ CTBN

@ Quick implementation of CTBNs using pyAgrum

Introduction, introspection, illustration

J aGrUM /pyAgrum

Introduction, introspection, illustration

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)

Introduction, introspection, illustration 4 [/ 52

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library

Introduction, introspection, illustration 4 [/ 52

aGrUM/pyAgrum : a (very short) history

> 10 years) aGrUM'’s goals (as a tool for laborator
g Yy
© PGM as a library(and not as a software = No IDE).

Introduction, introspection, illustration 4 [/ 52

aGrUM/pyAgrum : a (very short) history

> 10 years) aGrUM'’s goals (as a tool for laborator
g y
© PGM as a library(and not as a software = No IDE).
Q CH+!11

Introduction, introspection, illustration 4 [/ 52

aGrUM/pyAgrum : a (very short) history

> 10 years) aGrUM'’s goals (as a tool for laborator
13 Yy
© PGM as a library(and not as a software = No IDE).
Q@ C4++1!11
© Optimized (as much as possible).

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q@ C++!1!
© Optimized (as much as possible).
© Usable and improvable by others than us

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q@ C++!1!
© Optimized (as much as possible).
@ Usable and improvable by others than us (i.e. students).

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q@ C++!1!
© Optimized (as much as possible).
@ Usable and improvable by others than us (i.e. students).

@ Goals 1 to 3 rather well achieved

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q C++!!!
© Optimized (as much as possible).
@ Usable and improvable by others than us (i.e. students).
@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q C++!!!
© Optimized (as much as possible).
@ Usable and improvable by others than us (i.e. students).
@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)

© PGM as a library(and not as a software = No IDE).

Q@ C++!1!

© Optimized (as much as possible).

@ Usable and improvable by others than us (i.e. students).

@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

@ pyAgrum as a solution.

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)

© PGM as a library(and not as a software = No IDE).

Q@ C++!1!

© Optimized (as much as possible).

@ Usable and improvable by others than us (i.e. students).

@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

@ pyAgrum as a solution.

(< 6 year) pyAgrum's goals :

Introduction, introspection, illustration 4 [/ 52

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)

© PGM as a library(and not as a software = No IDE).

Q@ C++!1!

© Optimized (as much as possible).

@ Usable and improvable by others than us (i.e. students).

@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

@ pyAgrum as a solution.
(< 6 year) pyAgrum's goals :
© Wrapper of aGrUM (package, optimized, etc.).

Introduction, introspection, illustration

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q C++!!!
© Optimized (as much as possible).
@ Usable and improvable by others than us (i.e. students).
@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

@ pyAgrum as a solution.
(< 6 year) pyAgrum's goals :
© Wrapper of aGrUM (package, optimized, etc.).

© Useful, accessible and improvable for as many people as
possible.

Introduction, introspection, illustration

aGrUM/pyAgrum : a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)
© PGM as a library(and not as a software = No IDE).
Q C++!!!
© Optimized (as much as possible).
@ Usable and improvable by others than us (i.e. students).
@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.

@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.

@ pyAgrum as a solution.

(< 6 year) pyAgrum's goals :
© Wrapper of aGrUM (package, optimized, etc.).
© Useful, accessible and improvable for as many people as
possible.
© Public, documented and deployed as widely as possible.

Introduction, introspection, illustration

: a (very short) history

(> 10 years) aGrUM'’s goals (as a tool for laboratory)

© PGM as a library(and not as a software = No IDE).

Q@ C++!1!

© Optimized (as much as possible).

@ Usable and improvable by others than us (i.e. students).

@ Goals 1 to 3 rather well achieved but 4 was (at least)
questionnable.
@ Goals 1 to 3 make aGrUM interesting enough for outside the
laboratory.
@ pyAgrum as a solution.
(< 6 year) pyAgrum's goals :
© Wrapper of aGrUM (package, optimized, etc.).
© Useful, accessible and improvable for as many people as

possible.
© Public, documented and deployed as widely as possible.

@ repository : svn—local git—local gitlab—gitlab
@ Open Source : GPL then LGPL.

Introduction, introspection, illustration

aGrUM /pyAgrum : a framework for modeling, learning and

using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and

using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and

using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and

using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and

using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and

using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

Credal

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

pyAgrum

(python(3))

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

pyAgrum

(python(3))

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum :

using (probabilistic) graphical models

aGrUM

(C++20)

Credal
networks

Influence
diagrams

pyAgrum

(python(3))

Introduction, introspection, illustration

a framework for modeling, learning and

5 |/ 52

aGrUM /pyAgrum :

using (probabilistic) graphical models

aGrUM

(C++20)

Credal
networks

Influence
diagrams

pyAgrum

(python(3))

Introduction, introspection, illustration

a framework for modeling, learning and

5 |/ 52

aGrUM /pyAgrum :

using (probabilistic) graphical models

aGrUM

(C++20)

Credal
networks

Influence
diagrams

pyAgrum

(python(3))

Introduction, introspection, illustration

a framework for modeling, learning and

5 |/ 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

notebook

pyAgrum

(python(3))

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

notebook

dynamicBN

pyAgrum

(python(3))

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

notebook

dynamicBN

pyAgrum

(python(3))

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

aGrUM /pyAgrum : a framework for modeling, learning and
using (probabilistic) graphical models

notebook

dynamicBN

etc.

Agrum
p)((pﬂ*%"(g) ‘

aGrUM

(C++20)

Credal
networks

Influence
diagrams

Introduction, introspection, illustration 5 / 52

\) aGrUM/pyAgrum as

OpenSource project

Introduction, introspection, illustration

aGrUM/pyAgrum on the web

oypi s
s 120/6k/mont

ackage (6528

 arm

aGrUM/pyAgrum

AGRaphical Universal Modeler (nttps://gitlab.com/agrumery/aGrUM)

aGruM

aGrUM is a C++ library for graphical models. Itis

designed for easily building applications using
graphical models such as Bayesian networks, influence diagrams,
decision trees, GAI networks or Markov decision processes.

aGrUM s written to provide the basic building blocks to perform the
following tasks

» designing graphical models,
» leaming graphical models,

» elicitation of graphical models,

» inference within graphical models,
» planification.

‘The probabilistic graphical models currently presentin the library are
the following:

» Bayesian networks (irst and main targe),
*Influence Diagrams,

» Markov networks,

» Credal networks,

» O3PRM (Probabilistic Relational Models).

Licence

pyAgrum is a Python wrapper for the C++ aGrUM
library (using SWIG interface generator). It provides a high-level
interface to the part of aGrUM allowing to create, model, learn, use,
ian Networks and other graphical
‘models. Some specific (python and C++) codes are added in order to
simplify and extend the aGrUM API.

Several topics have been added to pyAgrum (as pure python modules
using pyAgrum) :

»
networks,

» Probabilistic causality (causal networks, do-calculus),
» dynamic Bayesian network,

» tools for explainability in Bayesian networks.

See the tutorials as jupyter notebooks for more details.

Installation : here

aGrUM /pyAgrum is released under the Gnu Lesser General Public License (LGPL v3.0), which means it can be freely copied and
distributed, and costs nothing. Especially, aGrUM can be used and linked into both free software and proprietary software, provided

that the code used under the LGPL is re-licensed under the
" nteerate the GiUM

LGPL the other parts of the software are permitted have other
o 22 b P case contact

7/

52

aGrUM /pyAgrum on gitlab.com

& GitLab = Menu v Search GitLab Q 0o v
] @0 ®
o o
] . aGrum @ 0~ (e unsar [12] [% Fork 11
(1] (=3
n 3
o528 Commits §° 18Branches () 60Tags [3) 138MBFiles [5.9GB Storage 47 43 Releases
4
aGrUM is a C++ library designed for easily building applications using graphical models such as Bayesian networks, influence
o diagrams, decision trees, GAI networks or Markov decision processes.
@ —
2 e v | seroms [+ History || Findfile | WebIDE | v | &, v
@
a
{skip-cil updating 01-Tutorial with fractions serene
n Plerre-Henri Wuillemin
=}
X &, UploadFile | [3)README | 3 Other | [CHANGELOG [3) CONTRIBUTING [CI/CD configuration | [3) Add Kubernetes cluster
@ Y
3 Configure Integrations
Name Last commit Last update
B acttools 3¢
Eapps. 3¢
> binder 3¢
) src 3¢
> wrappers days ag
P —)
dang-tdy)
giignore)

& gitab-ciym! g

Introduction, introspection, illustration

pyAgrum on pipy/anaconda/binder/readthedocs

{J

pyagrum 0.22.8

Introduction, introspection, illustration 9 / 52

pyAgrum on pipy/anaconda/binder/readthedocs

{J

pyagrum 0.22.8

Project description

— | < | Caley About Araconda Help Do
conda-forge / packages / pyagrum oz

Installers

conda install @

Introduction, introspection, illustration 9 / 52

pyAgrum on pipy/anaconda/binder/readthedocs

{J S aconon =

pyagrum 0.22.8 Galley About Anaconda Help Download Anaconda m
R — " conda-forge / packages / pyagrum 0.22.8

model learn, use,

and C+4)codes

are added in order © simplify and extend the aGrUM APL

Project description

[— Rt B License: LGPL3 0-only
. necesam o vt ng # Home: htp//agrum gib o

& 493998 total downloads
e £4 Lastupload: 22 days and 9 hours ago.

Installers

o e s e i
Fy—— condainstal©

conda-forge / packages / pyagrum oz

conda install -c conda-forge pyagrun

conda install -c conda-forge/label/cr202083 pyagrum
& 67226 il s
£ Lot plcce 16

Installers

conda install @

otnsat s packge wir

ncarun o o th otawng:
conda install - conda-forge pyagrim

onéa 1nstatl -c conda-forge/LaboL/gec? pyaaru

onda install - conda-forge/label/cf2s1901 pyagrim

e rrintinn

Introduction

lustration 9 /

pyAgrum on pipy/anaconda/binder/readthedocs

() ANACONDA “
pyagrum 0.22.8 Galley About Anaconda Help Download Anaconda m
R — " conda-forge / packages / pyagrum 0.22.8

model learn, use,

and C+4)codes
Sopsion ks e rbobistic rphi Hoses are added in order o simplify and extend the aGrUM APL

aigsn Project escription
R ech s o o # Home:hup lagrum gitabo
S vermas e WGttt T & 498998 total dovrloads
Jpee—— ' : 8 Last pload: 22 days and 9 hours ago
W= Installers
P
It T pciog contn e o s o
@ seacote
8 snsaten
conda install @
oot fcacond Wlp Dosnio Noorda S [
— | < | Caley About Avacondo ey Dosiood Anscorda Sgala g
conda-forge / packages / pyagrum oz [« EE
[

To instll this package with conda run one o the following
[T | conda install -c conda-forge pyagrun

conda install -c conda-forge/Label/gec? pyagrum
conda install -c conda-forge/label/cr201961 pyagrum

s i o conda install -c conda-forge/label/cr202083 pyagrum
& 67226 il s

8 Lot 6 hrs 36 minutcs

Instatlers pypi package 0228 aconda.org 0

e dwnlds = 20.6k/month dwnlds 5.2k/month

aGrUmM aGrUM

Agrum aGruM M pvagrum

eonda-raratl - conda-forge/Tabel/afserses pysgrom

e rrintinn

9 /

Code quality in aGrUM/pyAgrum : documentation

) 31U

Winpage lnd s Modins Namaspaes | Ciosvs < Fle

< GUM_SCALAR e
> Class Template Reference

Introduction, introspection, illustration 10 / 52

Code quality in aGrUM/pyAgrum : documentation

) 31U

< GUM_SCALAR Pl
s Template Reference

cmptrs .y
.=
o =
Introduction, introspection, illustration 10 / 52

Code quality in aGrUM/pyAgrum : documentation

[— Lazy Propagation
St Shona e
) aGrUMozss na—
[Ty e e———————— = o s pyhgram Laypropagatentas)

Class s for Lazy Propagation

- coumscanar IR P
> Class Template Reference Crecal T

A constant reference over the BayesNet eferenced by ths class.
pyAgrum ke documenta
P Retum type

pyAgrumBayestiet

=
“ e ~1fno Ba
_— - .
_— X0 -aasis

o Functions from pyAgrum nodeName (str) - a node name.

tions from e

| the computed Shanon's entropy of a node given the abservarion
Retum type

e printc" + Fson doo daing M an X <+t el Fsmtdons("u’, 5"}

2 S Front-cor o W an 3 10721

oo .

et e oo o

BEire(r + Frontasar doing X n 1 i 501 ToHoasie Froncert -1 4130)

Introduction

10 / 52

Code quality in aGrUM/pyAgrum : documentation

) 31U

LayPropagaion
Stater Stenay ference

it Sirstion

i rage s P P

< GUM_SCALAR
> Class Template Reference

e Apaskofaring aorems aco aly e od e

e - brtaneo ik i SNLSamE GUN SCALAR

Front-cor o W an 3 10721

seiment o e oo o

[
[

Leaming

Lazy Propagation

o pyhgar

Propagariontae)
Class s for Lazy Propagation
LazyPropagationton) > LazyPropagation
Parameters:

b (yAgnum Bayeshet] - 3 Bayesian network

Y
Retums
A constant reference over the BayesNet eferenced by ths class.
Retum type
pyAgrumBayestiet

ases

- I Bayes net
Heerp)
Parameters
X(n) - 2 node 1
nodeName st - a ode name
Retums
the computed Shanon's entropy of a node given the abservarion

Retum type

Creating your first Bayesian network with pyAgrum

(s xample s based on an Openlayes [dlosed] webis ioria)

{arcs) whic, logeher

the DAG:

Introduction, introspection, illustration

Code quality in aGrUM /pyAgrum : tests

testEguality (tests PotentialTestsuite- Testoperators) K
potential P) "
Testautee. Testoperators) .. ok
testrLithPotential (torts PotentiatTestoutte. Testoporators) ... 0
{tests PotentialTestSuite. Testoparators) ... ok
(tests.PotentialTestsuit)
testkL (tests.PotentialTestsuite rmopmmq
(tests.Pot

)

s (t Yesmpsrntum)

tostiiniax (tests »ueemamusune Testaporators)
(tests.Pot

e o
it tentialTestsuit Tesioperators) ... ¢
tialTest:)
QestPutF\rslPutmt\a\ {tests Pntsnl\a”estsu\te Yeslopermnr;} o
toperators) .. ol
testScaleAndTranslate eonts Pntsnl\a\Yes(Su\te Testoperators)
(Testoperators)
)

P
P)

testvari

).
explorerTestcase) ... o
estooTmICLoeses (tests PRioxpLorerTestoutte, PRHespLorerTertcase) - ¢

5. PRUexplorerTestsuite. PRexplorer TestCase)
s (tests.samplingTestSuicte. TestDictreature)
testDiCtONLabalsHiNTd (tosts.SamplingTestsuite. TestDictranture) ..«

593..905:

191.238:

TestInfers) .o
KaTestSuite.h (8 ns] R (tests.var
2L ikel ihoodTestsu I8 ns] belsofvars (tests.Var table)
Testsuite I8 ns] (tests var . Testl e
Testsuite.h [25 ns] (te dVariable)
ngCacheTestSuite [0 ns] tastiabals (tusts Uer\.\h\nschtSu\lt TnstLabn\\znd\lar\.\b\n) o
quenceTestsuite v 2 [0 ns] testPythont (tests. var: Lizedvariable) ... o
T [0 ns (tests.var g ohte)
[0 ns] (tests.var able)
1 117 us] tostLabels (tests.VariablesTestSu te. TestRangelar table)
eTests. [1391 ns] (tests.Var: able) ..
[117 ms] abls o
h [0 ns] LestorderTicks tests Var tablesTestsuite Ytstb\s(ml\zcdvarmhln)
[0 ns] (t Trestsuite.)
! [1 ns] ert ot Crest: CauseiaSTIestontte TesthSTmethod)
[169 ms] test oint (tests. Testosep) .. o
[850 ms] test_mininalCondSetdA (tests.CausalDSepTestsuite. Testsep)
[1516 ns] tart wiatmaLcondsetdC {tasts. CamsalscepTastSuttn. Testocep)
[539 ns] Uestsuite) ... o
ent Chntests. CausathoderTestutte TertCamethotel] k
test_CRANZ (tests. CausalllodelTestSuite. TestCausalltodel) Kk
[2 ms] test_sinpson (tests.CausaliodelTestsuite. TestCausaltiodel) k
[0 as] test_tobaccol. (tests. CausaliiodelTestSuite. TestCausaltodel) ... o
[1 ns] test_tobacco? (tests. CausalodelTestSute. TestCausalodel)
[2500 s] test Testsiapson)
[1ns] test-coet (tests Testsimpson) ... o
h 261 ms]
6 ms] ## Profilin

/ 52

Code quality in aGrUM/pyAgrum :

continuous integration

Cl on different platforms

& GitLab Projects v Groups Activi Milestones Snippets
—) aGrum ® agrumery > U aGrUM > Pipelines > #49619229
@ Project Pipeline #49619229 triggered 6 days &
R it .
Clleepeioy Update message in testsOnF
O 1ssues 2
@ 8jobs frommaster in 58 minutes and 36 secor
11 Merge Requests 1
R
ajco
Pipelines <o 9ab92190 - Gy
Jobs
schedules Pipeline Jobs &
Charts Build
@ Operations () linux_agrum o
Q Registry .
(@linux_pyagrum ©
O wiki
(¥)macos_agrum =)
o Snippets
(“)macos_pyagrum ©
£ settings
(9 windows_agru... ©

Deployment (to be continued)

& Gitlab prok ups v Ackivity Miesto
sorumery » 9 arUM > Pipeines » #4s6e3358

) cum

© Project pel d e

O Repositary Update message in testsOnPython.py

O isues 2

© 3jobsfrom 0.14.2in 18 minutes and 38 seconds (queued for 1 second)
T Merge Requests

r B8
ajo
Pipelines < 9abs2190 - @
Jobs
. Plpeline Jobs 3
Chart:
o Build Deploy
S Operations (@) linux_agrum o (@) linux_build o
Q Registry
@ linux_pyagum ©
O wiki

Nightly build (and tests)

(O] OSTIE gmsteroctize) 0 003ana
pos & Undate veRsONT e) 3hours 300
(o) #50491124by @ ¥master o cfbdc2d2) © 003420

- & Update veRONT e) & 1daya00

Some stats

Introduction, introspection, illustration 13 / 52

@ Visits (readthedocs, agrum.org, notebooks)

Introduction, introspection, illustration 13 / 52

Some stats

@ Visits (readthedocs, agrum.org, notebooks)

(’h’ Vues uniques
~ 16 févr. 2022 - 17 mars 2022
5835
100,00 % (5835, A ~A
16 févr. 2021 - 17 mars 2021

3079
100,00 % (3079) A AAA

Introduction, introspection, illustration 13 / 52

Some stats

@ Visits (readthedocs, agrum.org, notebooks)

(’h’ Vues uniques
~ 16 févr. 2022 - 17 mars 2022
5835
100,00 % (5835, A ~A
16 févr. 2021 - 17 mars 2021
3079
1 — 1o

@ Téléchargements

Introduction, introspection, illustration 13 / 52

Some stats

@ Visits (readthedocs, agrum.org, notebooks)

"hi Vues uniques
~ 16 févr. 2022 - 17 mars 2022
5835
S A
16 févr. 2021 - 17 mars 2021
3079
o

1 —

@ Téléchargements
[17, Mar 22, 06:50] pyAgrum - total monthly - rate : 414.79/month

20000
o 3
17500 | =W downloads last year 17g81 // i
g
15039 :
15000 / S
14027 13729 g
12500 5
/ z
10000 8838 s g
8577 P
7500 7] /
5000 4782 /
B190 | —

2500 /

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

Introduction, introspection, illustration 14 / 52

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities

Introduction, introspection, illustration 14 / 52

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities

o Interaction

Introduction, introspection, illustration 14 / 52

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities

o Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
e Structuration

Introduction, introspection, illustration 14 / 52

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities

o Interaction

gitlab issues, discord, gitter, linkedin, researchGate, what else ?
e Structuration

communauty (?), consortium (?)
e Scientific orientation ?

@ models
algorithms

°
@ scientific committee
e ?

Introduction, introspection, illustration 14 / 52

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities
o Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
e Structuration
communauty (?), consortium (?)
e Scientific orientation ?

@ models
o algorithms
o scientific committee
e ?
o Development orientation ?

Introduction, introspection, illustration 14 / 52

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities

o Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
e Structuration
communauty (?), consortium (?)
e Scientific orientation ?
@ models
o algorithms
@ scientific committee
e ?
o Development orientation ?
o weaknesses, strengths
missing features
Ragrum, JSagrum

Steering committee
?

Introduction, introspection, illustration 14 / 52

Introspection : focus on 3 elementary components

otebook
dynamicBN
etc.
pyAgrum
(python(3))
FMDP

Credal
networks
Influence
diagrams
Markov
networks
PRM

aGrUM

(C++20)

®

Introduction, introspection, illustration 15 / 52

Introspection : focus on 3 elementary components

A
—@—

Introduction, introspection, illustration 16 / 52

Representation of Discrete Variable

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :
index 0 1 2 3 4 5

label a e i o u vy

Introduction, introspection, illustration 17 / 52

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :
index 0 1 2 3 4 5

label a e i o u vy

The kind of labels defines 4 different types of discrete variables :

Introduction, introspection, illustration

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :

index 0 1 2 3 4 5

label a e i o u vy

The kind of labels defines 4 different types of discrete variables :

@ LabelizedVariable : list of generic labels (as string),

Introduction, introspection, illustration

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :

index 0 1 2 3 4 5

label a e i o u vy

The kind of labels defines 4 different types of discrete variables :
@ LabelizedVariable : list of generic labels (as string),

@ RangeVariable : list of continguous integer labels,

Introduction, introspection, illustration

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :

index 0 1 2 3 4 5

label a e i o u vy

The kind of labels defines 4 different types of discrete variables :
@ LabelizedVariable : list of generic labels (as string),
@ RangeVariable : list of continguous integer labels,

e DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

Introduction, introspection, illustration

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :

index 0 1 2 3 4 5

label a e i o u vy

The kind of labels defines 4 different types of discrete variables :
@ LabelizedVariable : list of generic labels (as string),
@ RangeVariable : list of continguous integer labels,

e DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

@ IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration

Representation of Discrete Variable

Data structure : DiscreteVariable

goal : map a finite domain [0, - - - , domainSize] on a list of labels.

For a DiscreteVariable X that can take the values a, e, i, 0, u, y, X is represented by an array :

index 0 1 2 3 4 5

label a e i o u vy

The kind of labels defines 4 different types of discrete variables :
@ LabelizedVariable : list of generic labels (as string),
@ RangeVariable : list of continguous integer labels,

e DiscretizedVariable : list of labels defined by a list of float ticks (see
below),

@ IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration

Discrete variables as list of labels

The kind of labels defines 4 different types of discrete variables :
@ LabelizedVariable : list of generic labels (as string),
@ RangeVariable : list of continguous integer labels,
@ DiscretizedVariable : list of labels defined by a list of float ticks (see below),

@ IntegerVariable : list of non-contiguous integer labels.

Introduction, introspection, illustration 18 / 52

Discrete variables as list of labels

The kind of labels defines 4 different types of discrete variables :
@ LabelizedVariable : list of generic labels (as string),
@ RangeVariable : list of continguous integer labels,
@ DiscretizedVariable : list of labels defined by a list of float ticks (see below),

@ IntegerVariable : list of non-contiguous integer labels.

A

i i Red 71559
gum.LabelizedVariable A{Red| Green|Blue} Red | Green | Blue s 17664
0.2159 0.1766 0.6075 Blue 60.75%)

A
u=432;0=093

H 3 4 5 6 3 17.29%]
gum.RangeVariable AlE26] a 49025
01729 0.4902 0.1833 0.1536 s 18.33%)
6 15.36%)
A
p=115;0=245
i i H -1;-0.5[| [-0.5:0. .5:1 1;10] [-1;-0.5[31279
gum.DiscretizedVariable Al-1,-0.5,0.5,1,10] 1051 | [OS050) [0541 | 1101 105.05] 219
‘ 0.3127 0.3219 0.1325 DAZSZB‘ 0511 13.25
[1:10) 2329
- -14 5 6
gum.IntegerVariable A{-14]5]6}
0.4087 0.0973 0.4940

def aff(name, fastStx):
bn=gum. fastBN(fastStx)
return (f'<h2>{name}</h2>",
fr<tt>{fastStx}</tt>",
gnb.getPotential(bn.cpt(0)),
gnb.getPosterior(bn, target=0,evs={}))

gnb.sideBySide(*aff("gum.LabelizedVariable","A{Red|Green|Blue}"),
*aff("gum.Rangevariable","A[3,6]"),
*aff("gum.Discretizedvariable","A[-1,-0.5,0.5,1,10]"),

*aff("gum.IntegerVariable","A{-14|5|6}"),
ncols=4)

gum.LabelizedVariable A{Red |Green|Blue} m@ Blue
0.6075
gmengevarce wa R
-0.4902

gum.DiscretizedVariable ~ A[-1.-0.5.0.5,1,10] MMMM

u=432;0=093

S e w

A
p=115,0=245

gum.IntegerVariable A{-14]5]6} EXERE

19 / 52

A shared and simple API for all Discrete Variables

Introduction, introspection, illustration 20 / 52

A shared and simple API for all Discrete Variables

def apiDiscreteVar(variable,value,position):
print(f"{variable} : {value=}, {position=}")
print(f" + {variable.domainSize()=}")
print{f" + {variablel[valuel=}")
print(f" + {variable.index(value)=}")
print(f" + {variable.label(position)=}")

apiDiscreteVar(bn.variable("A"), "Green",8)
apiDiscreteVar{bn.variable("B"),"5",0)
apiDiscreteVar(bn.variable("c"),"8.75",0)
apiDiscreteVar(bn.variable("D"),"5",8)

A:labelized(<Red,Green,Blue>) : value='Green', position=0

+ variable.domainSize()=3

+ variablel[value]=1

+ variable.index(value)=1

+ variable.label(position)="Red"’

B:Range([3,6]) : value="5', position=0

+ variable.domainSize()=4

+ variablel[value]=2

+ variable.index(value)=2

+ variable.label(position)="3"
C:Discretized(=<[-1;-08.5[,[-0.5;0.5[,[0.5;1[,[1;18]=) : value='0.75', position=0
+ variable.domainSize()=4

+ variablelvalue]=2

+ variable.index(value)=2

+ variable.label(position)="[-1;-0.5[
D:Integer(<-14,5,6=) : value='5', position=0
+ variable.domainSize()=3

+ variablel[value]=1

+ variable.index(value)=1

+ variable.label(position)="-14"

Introduction, introspection, illustration 20 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

@ Very compact definition of a graph : not even explicit set of nodes

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

@ Very compact definition of a graph : not even explicit set of nodes

@ Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

@ Very compact definition of a graph : not even explicit set of nodes

@ Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

@ the nodes (unsigned long) are called NodeId

Introduction, introspection, illustration 21 / 52

Representation of graphs

Data structure : Directed|Mixed|UnorientedGraph

goal : represent a list of Arc (a, b) and Edge {b, a} between positive integers.

@ Very compact definition of a graph : not even explicit set of nodes

@ Nodes, edges and arcs will be annotated for more complex structures based
on graphs.

@ the nodes (unsigned long) are called NodeId

Several type of graphs :
@ DiGraph
o DAG (Directed Acyclic Graph)
@ UndiGraph (and CliqueGraph)
@ MixedGraph

Introduction, introspection, illustration

API for graphs

@ node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode (a)

Introduction, introspection, illustration

API for graphs

@ node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode (a)
@ arcs, edges : addEdge, eraseEdge, etc.

Introduction, introspection, illustration

API for graphs

node : addNode, addNodeWithId(a), addNodes(nbr) , eraseNode (a)

arcs, edges : addEdge, eraseEdge, etc.

accessors : parents,children,neighbour, etc.

algorithms : topologicalOrder, moralGraph, connectedComponents, etc.
visualisation : toDot() (used by pyAgrum.lib.notebook for instance)

Digraph

g=gun.DiGraph()
g.addNodes(5) # returns the generated nodeld

{0, 1, 2, 3, 4}

for i in range(s):
g.addArc(i, (i+1)%5)
g.addArc(i, (i+2)%5)

g.addArc(0,0)

g.addArc(4,4)

g

Introductio lustration 22 / 52

API for graphs

node : addNode, addNodeWithId(a), addNodes (nbr) , eraseNode(a)
arcs, edges : addEdge, eraseEdge, etc.

accessors : parents,children,neighbour, etc.

algorithms : topologicalOrder, moralGraph, connectedComponents, etc.

visualisation : toDot() (used by pyAgrum.lib.notebook for instance)

Digraph

g=gun.DiGraph()

g.addNodes(5) # returns the generated nodeld

{0, 1, 2, 3, 4}

for i in range(s):
g.addArc(i, (i+1)%5)
g.addArc(i, (i+2)%5)

g.addArc(0,0)

g.addArc(4,4)

g

UndiGraph

g=gum.UndiGraph()

g.addNodes(5)

for i dn range(5):
g.addEdge (1, (i+1)%5)
g.addEdge (1, (1+2)%5)

g.addEdge(0,0)

g.addEdge(4,4)

9

Mixed Graph

g=gum_MixedGraph()

g.addNodes(5)

for i in range(s):
g.addEdge (i, (i+1)%5)
g.addArc(i, (1+2)%5)

g.addArc(0,8)

g.addedge(d,4)

Introductio

22 / 52

Representation of multi-dimensionnal arrays

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Introduction, introspection, illustration 23 / 52

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f=g+h

Introduction, introspection, illustration

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f()a):g()>)+h())

Introduction, introspection, illustration

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f())):g(m)“‘h())

(1. 213 41005 6.1 [7. 811 M. 2105.7.11 ?
gl.) hi.) Fl=gl)+ hi)

Introduction, introspection, illustration

Representation of multi-dimensionnal arrays

Data structure : Potential
goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f(a) b) C) = g(b’ a, C) + h(ba C)

?

[. 2103. 411005 6. [7. 8.111 M.3105.7.1 7
gl..) hi.) fL =gl)+h)

Introduction, introspection, illustration

Representation of multi-dimensionnal arrays

Data structure : Potential

goal : representation of multi-dimensional arrays (of float) without ambiguity on
dimensions.

Implementing tensor algebra

f(a) b, C) = g(b> a C) + h(b) C)

1.0000 2.0000 6.0000

3.0000 4.0000 1.0000 3.0000 10.0000 14.0000

5.0000 6.0000 5.0000 7.0000 3.0000 7.0000

7.0000 8.0000 15.0000

hib,c)

gla. b.c) fla,b,c) = gla, b,c)+ hib, c)

Introduction, introspection, illustration

API for Potential

A Quite complex API.

Introduction, introspection, illustration

API for Potential

A Quite complex API.

Creation and operations on Potential

Introduction, introspection, illustration

API for Potential

A Quite complex API.

Creation and operations on Potential

a=gum.LabelizedVariable("A","descr of A",2)
b=gum.Labelizedvariable("B","descr of B",2)
c=gum.LabelizedvVariable("C","descr of C",62)

g=gum.Potential(}.add(b).add(a).add(c).fillwith([1,2,3,4,5,6,7,8])
h=gum.Potential()}.add(b).add{(c).fillwith([1,3,5,71)

Introduction, introspection, illustration

API for Potential

a=gum.LabelizedVariable("A","descr of A",2)
b=gum.Labelizedvariable("B","descr of B",2)
c=gum.LabelizedvVariable("C","descr of C",62)

g=gum.Potential(}.add(b).add(a).add(c).fillwith([1,2,3,4,5,6,7,8])
h=gum.Potential()}.add(b).add{(c).fillwith([1,3,5,71)

f=g+h

Methods on Potential

\ | \

Introduction, introspection, illustration

API for Potential

A Quite complex API.

eation and operations on Po

a=gum.LabelizedVariable("A","descr of A",2)
b=gum.Labelizedvariable("B","descr of B",2)
c=gum.LabelizedvVariable("C","descr of C",62)

g=gum.Potential(}.add(b).add(a).add(c).fillwith([1,2,3,4,5,6,7,8])
h=gum.Potential()}.add(b).add{(c).fillwith([1,3,5,71)

f=g+h
v

Methods on Potential

gnb.sideByside(f, f.sum(}, . margSumOut("8"),
captions=['$$f(a,b,c)$$", *$$\sum {a,b,c} fla,b,c)$$’, $$\sum {b} f(a,b,c)$s"]

5.0000

68.0
n 10.0000 13.0000 Z/m- b.¢)
n 4.0000 7.0000 abe

12.0000 15.0000

Ttab.o)

Introduction, introspection, illustration

API for Potential

A Quite complex API.

eation and operations on Po

a=gum.LabelizedVariable("A","descr of A",2)
b=gum.Labelizedvariable("B","descr of B",2)
c=gum.LabelizedvVariable("C","descr of C",62)

g=gum.Potential(}.add(b).add(a).add(c).fillwith([1,2,3,4,5,6,7,8])
h=gum.Potential()}.add(b).add{(c).fillwith([1,3,5,71)

f=g+h
v

Methods on Potential

gnb.sideByside(f, f.sum(}, . margSumOut("8"),
captions=['$$f(a,b,c)$$", *$$\sum {a,b,c} fla,b,c)$$’, $$\sum {b} f(a,b,c)$s"]

5.0000

68.0
n 10.0000 13.0000 Z/m- b.¢)
n 4.0000 7.0000 abe

12.0000 15.0000

Ttab.o)

Introduction, introspection, illustration

Potential for probabilities

Introduction, introspection, illustration

Potential for probabilities

bn=gum. fastBN("A->B->C;D->B")
gnb.sideBySide(bn,bn.cpt("A"),bn.cpt("B"),bn.cpt("C")},bn.cpt("D"))

L 1 o 1

0.1495 0.8505 07158 0.2842

Introductio

25 | 52

Potential for probabilities

bn=gum. fastBN("A->B->C;D->B")
gnb.sideBySide(bn,bn.cpt("A"),bn.cpt("B"),bn.cpt("C")},bn.cpt("D"))

[r—

0.1495 0.8505

0.3644

n 0.6883 0.3117

n 0.2372 0.7628

-

07158 0.2842

0.6500

P(A,B,C,D) = P(A) x P(D) x P(B|A, D) x P(C|B)

Introduction, introspection, illustration

ntial for probabilities

bn=gum. fastBN("A->B->C;D->B")
gnb.sideBySide(bn,bn.cpt("A"),bn.cpt("B"),bn.cpt("C"},bn.cpt("D")}

0.8505

P(A,B,C,D) = P(A) x P(D) x P(B|A, D) x P(C|B)

-

07158 0.2842

PABCD=bn. cpt("A")*bn.cpt("B")*bn. cpt{"C")*bn_cpt("D*)
PABCD

ntial for probabilities

bn=gum. fastBN("A->B->C;D->B")
gnb.sideBySide(bn,bn.cpt("A"),bn.cpt("B"),bn.cpt("C"},bn.cpt("D")}

0.8505

P(A,B,C,D) = P(A) x P(D) x P(B|A, D) x P(C|B)

-

07158 0.2842

PABCD=bn. cpt("A")*bn.cpt("B")*bn. cpt{"C")*bn_cpt("D*)
PABCD

Potential for probabilities (2)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

P(DIC)

Introduction, introspection, illustration 26 / 52

Potential for probabilities (2)

Introduction, introspection, illustration

Potential for probabilities (2)

P(DIC) = Pg(?»)C) _ Y.sPIABCD)

~ Y appP(AB,CD)

Introduction, introspection, illustration

Potential for probabilities (2)

P(DIC) = Pg(?»)C) _ Y.sPIABCD)

~ Y appP(AB,CD)

pABCD.margSumQut(["A","B"])/pABCD.margSumIn("C")

0.7409 0.6943

n 0.2591 0.3057

Introduction, introspection, illustration

26 | 52

Potential for probabilities (2)

P(DIC) = Pg(?»)C) _ Y.sPIABCD)

~ Y appP(AB,CD)

pABCD.margSumQut(["A","B"])/pABCD.margSumIn("C")

0.7409 0.6943

n 0.2591 0.3057

Introduction, introspection, illustration

26 | 52

Using these components to build new model in pyAgrum

Introduction, introspection, illustration 27 | 52

Using these components to build new model in pyAgrum

Two models exist only in pyAgrum and has been developped mainly from those
components :

dynamic Bayesian Network Causal model

Time slice 0 Time slice t

)
<)

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the
time tand by i : Xt = x", ... x)

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the
time t and by i : X(®) = Xl(t), e ,X,E,t] for which those properties hold :

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the
time t and by i : X(®) = Xl(t), e ,X,E,t] for which those properties hold :
@ Markov property :

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the
time t and by i : X(®) = Xl(t), e ,X,E,t] for which those properties hold :
@ Markov property :
PX® | x0) ... Xt-1)) = p(xX® | x(t-1))
@ Homogeneity :

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the
time t and by i : X(®) = Xl(t), e ,X,E,t] for which those properties hold :
@ Markov property :
PX® | x0) ... Xt-1)) = p(xX® | x(t-1))
@ Homogeneity :
P(X®) | Xt-D)=... = p(X1) | X(©@)),

Introduction, introspection, illustration

dynamic Bayesian Networks

dBN (dynamic BN)

a dynamic Bayesian network is a Bayesian network with wariables indexed by the
time t and by i : X(®) = Xl(t), e ,X,E,t] for which those properties hold :
@ Markov property :
PX® | x0) ... Xt-1)) = p(xX® | x(t-1))
@ Homogeneity :
P(X® | Xt-1)=... = p(XD | X)),

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(®)),

Introduction, introspection, illustration 29 / 52

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),
@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),
@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),

@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

t=20 ‘tl(tfl

—1 —1
P[xlm,...,xsm |X1(t),...,XS(t])

i
B

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),

@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

t=20 ‘tl(tfl

—1 1 _
PO ol T) = P X))

i
B

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),

@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

t=20 ‘tl(tfl

—1 1 _
PO ol T) = P X))

—1 —1 —1
P(Xz(’:)\xl(r),Xz(t J,Xa(t)]

i
B

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),

@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

t=0 t[(t—1
1 . B

P[Xft)»-«-,xg,(t) |X1(t),...,XS(t o = P(xl(t) | (1)
Pt (1) L) (D)

» X2 » X3
P(X:;(t) ‘X2(t71) X(tfl)yx(tfl)]

>3
1024 versus 4-+16+16+8+2=46!! P | XD)

i
B

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),
@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

t=0 t[(t—1
1 . B

P[Xft)»-«-,xg,(t) |X1(t),...,XS(t o = P(xl(t) | (1)
Pt (1) L) (D)

» X2 » X3
P(X:;(t) ‘X2(t71) X(tfl)yx(tfl)]

>3
1024 versus 4-+16+16+8+2=46!! P | XD)
P (t)
(x5)

i
B

Introduction, introspection, illustration

dynamic Bayesian networks : 2-TBN

A dynamic Bayesian network is defined by
e initial distributions (P(X(?)),

@ the transition between the variables at time t — 1 and the same varaibles at
time t (timeslices).

» X2 » X3
P(X:;(t) ‘X2(t71) X(tfl)yx(tfl)]

>3
1024 versus 4-+16+16+8+2=46!! P | XD)
P
(x5)

j< @ P[xl(t),...,xs(t) IXftil),...,XS(til)) :P(xl(t) | x(t1)
@ : @ P(Xz(t) ‘Xl(rfl) X(rfl) X(tfl))
O

The representation a.k.a 2TBN (2 timeslices BN) allow the modelisation of a virtually infinite Bayesian
network which is the unrolled model from time 0.

Introduction, introspection, illustration

Markov Chain and dynamic Bayesian network

0.25
0.75

",
o

0.5 70.5

Q

0.25
0.25

B - Ry

o
)
G

Introduction, introspection, illustration 30 / 52

Markov Chain and dynamic Bayesian network

025 0 0.75
PX"| XY= 025 025 0.5
025 0.5 0.25

@ a discrete variable (X") (at time n).

@ Parameters for this model :
o Initial condition : P(X©)
e transition probabilities : P(X" | X" 1)

Equivalent dynamic Bayesian network :

Introduction, introspection, illustration

Markov Chain and dynamic Bayesian network

025 0 0.75
PX"| XY= 025 025 0.5
025 0.5 0.25

@ a discrete variable (X") (at time n).

@ Parameters for this model :
o Initial condition : P(X©)
e transition probabilities : P(X" | X" 1)

Equivalent dynamic Bayesian network :

agn : (00— (D= (D oren . OO0

Introduction, introspection, illustration

Markov Chain and dynamic Bayesian network

025 0 0.75
PX"| XY= 025 025 0.5
025 0.5 0.25

@ a discrete variable (X") (at time n).

@ Parameters for this model :
o Initial condition : P(X©)
e transition probabilities : P(X" | X" 1)

Equivalent dynamic Bayesian network :
dBN : =)= —(— 2TBN : H@

A Could we do the same with continuous time ?

Introduction, introspection, illustration

Continuous-Time Markov Process

Dynamic processus dynamique verifying :
@ a discrete variable

Introduction, introspection, illustration 31 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :
@ a discrete variable

@ a transition from a state to another can happen any time,
0 f t, t...
. :
X o) X(n) X(1)

Introduction, introspection, illustration 31 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :
@ a discrete variable
@ a transition from a state to another can happen any time,

0 f t, t...
— n_k
X© X(n) X(n)

@ Continuous time Markov property :

Vs > r,Vt > 0, P(X(s+ t)|X(s)), X(r)) = P(X(s + t)|X(s)))

Introduction, introspection, illustration 31 / 52

Continuous-Time Markov Process

Dynamic processus dynamique verifying :
@ a discrete variable
@ a transition from a state to another can happen any time,

0 f t, t...
- 2 3
X o) X(n) X(1)

@ Continuous time Markov property :

Vs > r,Vt > 0, P(X(s+ t)|X(s)), X(r)) = P(X(s + t)|X(s)))

Exponential distribution 00

D ~ Exp(A) :Z
@ Cumulative distribution function :j
Vd > 0,F(d)=1—eM
e E(D)=A"1 02 52?13_
0.1 =15
° G(D) = Ail 00 1 2 3 4 5

Introduction, introspection, illustration

Continuous Time Markov Chain (CTMC)

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to

an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain MC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a

stochastic matrix.

Minimum of independent exponential distributions

X ~ Exp(A), Y ~ Exp(w), X AL Y = min(X,Y) ~ Exp(A + p)

Introduction, introspection, illustration 32 / 52

Continuous Time Markov Chain MC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ~ Exp(A), Y ~ Exp(w), X IL Y = min(X, Y) ~ Exp(A + u)

Continuous Time Markov Chain
(Xt € X1y yXn)e>0 CAMTC is defined by

.

Introduction, introspection, illustration

Continuous Time Markov Chain (CTMC)

A CTMC is a continuous stochastic process in which, for each state, the process will change state according to
an exponential random variable and then move to a different state as specified by the probabilities of a
stochastic matrix.

Minimum of independent exponential distributions

X ~ Exp(A), Y ~ Exp(w), X IL Y = min(X, Y) ~ Exp(A + u)

Continuous Time Markov Chain
(Xt € X1y yXn)e>0 CAMTC is defined by

e P(Xo) —0.21 020 0.01
@ Vi,j > n,q;; tels que Qx = 0.05 —0.10 0.05
Q gicR 0.01 0.20 —0.21
Q Vi#j,q,; R’
Q Vi, Zj gij=0 intensity matrix

.

gi,; is the parameter of the exponential distribution controlling the transition from state i to state j
—qj,i is the paramter of the exponential distribution controlling a transition from state i.

Introduction, introspection, illustration

(Xt € X1y >Xn)t20 CTMC :
e P(Xo)

o Qx = (gi,j)i<n,j<n intensity matrix

Introduction, introspection, illustration 33 / 52

(Xt € X1y >Xn)t20 CTMC :
e P(Xo)

o Qx = (gi,j)i<n,j<n intensity matrix

Properties

@ pij = -

. is the probability of transition from x; to x;

Introduction, introspection, illustration 33 / 52

(Xt € X1y >Xn)t20 CTMC :
e P(Xo)

o Qx = (gi,j)i<n,j<n intensity matrix

Properties
qi,j

° pij=—2- is the probability of transition from x; to x;

o P(X;) = P(Xo) - exp(Qxt) with exp(M) = Z:OZO %

Introduction, introspection, illustration 33 / 52

(Xt € X1y >Xn)t20 CTMC :
e P(Xo)

o Qx = (gi,j)i<n,j<n intensity matrix

Properties

°pij= f";{'_ is the probability of transition from x; to x;

o P(X;) = P(Xo) - exp(Qxt) with exp(M) = 32, M)
Convergence

With some good conditions (ergodicity), P(Xt)t—)_) P(X*)
(o]

Introduction, introspection, illustration

(Xt € X1y)Xn)tZO CTMC :
e P(Xo)

o Qx = (gi,j)i<n,j<n intensity matrix

Properties

°pij= f";{'_ is the probability of transition from x; to x;

o P(X;) = P(Xo) - exp(Qxt) with exp(M) = 32, M)
Convergence

With some good conditions (ergodicity), P(Xt)t—)_) P(X*)
(o]

@ Forward sampling :
draw(exp(—gi,i)) puis draw((p; j,j # i)).

Introduction, introspection, illustration

(Xt € X1y)Xn)tZO CTMC :
e P(Xo)

o Qx = (gi,j)i<n,j<n intensity matrix

Properties

°pij= f";{'_ is the probability of transition from x; to x;

o P(X;) = P(Xo) - exp(Qxt) with exp(M) = 32, M)
Convergence

With some good conditions (ergodicity), P(Xt)t—> P(X*)
—00
@ Forward sampling :
draw(exp(—gi,i)) puis draw((p; j,j # i)).
@ Convergence of P(X;) = P(Xo)exp(th)tj) P

Introduction, introspection, illustration

factorized CTMC : CTBN

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if

o X =(Xy,---,X,) continuous-time Markov process

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if

o X =(Xy,---,X,) continuous-time Markov process

@ G oriented graph on X

Introduction, introspection, illustration 34 / 52

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if

o X =(Xy,---,X,) continuous-time Markov process
@ G oriented graph on X (not DAG)

Introduction, introspection, illustration

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if

o X =(Xy,---,X,) continuous-time Markov process
@ G oriented graph on X (not DAG)
e VX € X, Qx conditional intensity matrix (CIM)

Introduction, introspection, illustration

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if

o X =(Xy,---,X,) continuous-time Markov process
@ G oriented graph on X (not DAG)
e VX € X, Qx conditional intensity matrix (CIM)

Rx isa CIM = V <pax>, Qx|pay intensity matrix.

Introduction, introspection, illustration

factorized CTMC : CTBN

(X, G, (Qx)xex) Continuous-Time Bayesian Network if
o X =(Xy,---,X,) continuous-time Markov process
@ G oriented graph on X (not DAG)

e VX € X, Qx conditional intensity matrix (CIM)

Rx isa CIM = V <pax>, Qx|pay intensity matrix.

O o [
x0 -1.0000 1.0000
a0
l x1 6.0000 -6.0000
y1
x0 | -50.0000 50.0000
al

x1 | 60.0000 -60.0000

x1 2.0000 -2.0000

yo
x0 | -10.0000 10.0000
Ed

x1 | 20.0000 -20.0000

2.0000 -2.0000 x0 -5.0000 5.0000
a0

, illustration

CTBN - properties

Introduction, introspection, illustration 35 / 52

CTBN - properties

@ Arc always temporal (which allows 'cycle’) :
A= B &= P(Bes, | A-r) =

Introduction, introspection, illustration 35 / 52

CTBN - properties

@ Arc always temporal (which allows 'cycle’) :
A= B &= P(Bes, | A-r) =

@ A Continuous-Time Bayseian network is a joint continuous-time
Markov process.

Introduction, introspection, illustration

From a CTBN to the Markov process : amalgamation

Introduction, introspection, illustration 36 / 52

From a CTBN to the Markov process : amalgamation

3

From a CTBN to the Markov process : amalgamation

Qo= [1) Quipjae= % [3 3
1\ 2 -2 y\4 —4
Qxjagn = Zo[=5 5 Qv o ar = Yo -7 7
z;\6 —6 ph\8 -8

Introduction, introspection, illustration 36 / 52

From a CTBN to the Markov process :

Qxlag o =

QXjaon =

Introduction, introspection, illustration 36 / 52

= Y%

) Qyjpr,o =

Y

Yo

Y

Yo
-3

Yo
-7

amalgamation

%
3
) (zo,30) (o,p1) (T1,%0) (T1,31)
—4
(zo,50) [—4 3 1 0
n QxYlaobs = (o, 1) 4 -9 0 5
7 (z1,90) 2 0 -9 7
8 (@) \ 0 6 8 —14

From a CTBN to the Markov process : amalgamation

Ty X
— -1 1 — -3 3
Qoo = 0 Qrinm = 0 @ow) (20,91) (@1,%0) (21,9)
1\ 2 -2 y\4 —4
(wo,0) [—4 3 1 0
B T w0 Qxyias = @) | 4 -9 0 5
Qxlags = F0 <_5 5) Qyjpre; = Y0 (_7 7) (z1,90) 2 0 -9 7
n\6 -6 n\s -8 (zn) \ 0 6 8 -14

The amalgamation of all the CIMs of a CTBN produces the intensity
matrix of the joint Markov process. J

Introduction, introspection, illustration 36 / 52

Forward sampling dans un CTBN

Introduction, introspection, illustration 37 | 52

Forward sampling dans un CTBN

CTBN Forward sampling

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling

Q (Xii1, Dt) = (argmin, min)xe ctan Draw (Qx)

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling

Q (Xii1, Dt) = (argmin, min)xe ctan Draw (Qx)
Q X1 = DraW(QX)

Introduction, introspection, illustration 37 / 52

Forward sampling dans un CTBN

CTBN Forward sampling

Q (Xii1, Dt) = (argmin, min)xe ctan Draw (Qx)
Q X1 = DraW(QX)
© Note (X;, D;)

Introduction, introspection, illustration 37 | 52

Forward sampling dans un CTBN

CTBN Forward sampling

Q (Xi+1, Dt) = (argmin, min)xecTenDraw(Qx)
Q xty1 = Draw(Qx)

© Note (X;, D;)

@ loop until stop

Introduction, introspection, illustration 37 | 52

Forward sampling dans un CTBN

CTBN Forward sampling

Q (Xi+1, Dt) = (argmin, min)xecTenDraw(Qx)
Q xty1 = Draw(Qx)

© Note (X;, D;)

@ loop until stop

Introduction, introspection, illustration 37 | 52

Forward sampling dans un CTBN

CTBN Forward sampling

@ (Xit1, D) = (argmin, min) xecren Draw(Qx)
Q xty1 = Draw(Qx)

© Note (X;, D;)

@ loop until stop

Introduction, introspection, illustration

Forward sampling dans un CTBN

CTBN Forward sampling

Q (Xev1, Dt) = (argmin, min) xe cran Draw (Qx)
Q xt+1 = Draw(Qx)

© Note (X;, D;)

@ loop until stop

L0 1 = —
— A
0.5
00+ — ——, : - . — .
1.0 n - — 10 l{: 20 A0 ‘_ — En
— B
° 0.5‘ JL
0.0+ L —n = = L
1.0 10 20 an AN a0 AN
—c
0.5
0.0 - - - - -
0 10 20 30 40 50 60

Introduction, introspection, illustration

\) Implémentation (rapide)

Introduction, introspection, illustration

Goall : way to define a CTBN

Introduction, introspection, illustration 39 / 52

Goall : way to define a CTBN

ctbn = Ctbn()
ctbn.add(gum.LabelizedVariable("A"
ctbn.add(gum. LabelizedVariable("B
ctbn.add(gum.LabelizedVariable("
ctbn.add(gum.LabelizedVariable("Y

ctbn.addArc("A",
ctbn.addArc("

ctbn.CIM(*A") [:]

ctbn.CIM("B") [:]

ctbn. CIM("X") [{’ @ "yo"d = [[-1, 1]

ctbn. CIM("X") [{ "yo"} = [[-1, 1]

ctbn. CIM(*X") [{"A'

@ "y1"} = [[-5, 51,

ctbn.CIM("X") [{

"y1"} = [[-5, 51,
[4, -411

“bo", X'z “xo"}H = [[-2, 2],
[5, -511

"x0"}] = [[-3, 3],
[4, -411

ctbn. CIM("Y") [{"B": "b0", "X": "x1"}] = [[-3, 3]
[5, =511

ctbn.CIM("Y") [{"B": "b1", "X": "x1"}] = [[-7, 7]
[8, -811

ctbn.CIM("Y") [{"B

ctbn.CIM("Y") [{"B": "b1", "X’

gnb. sideBySide(ctbn,ctbn.CIM("A")._pot, ctbn.CIM("X")._pot)

1.0000

n 2.0000 -2.0000
ﬂ 10000 1.0000

-1.0000 1.0000 n 3.0000 -3.0000

2.0000 -2.0000 -5.0000 50000

n 6.0000 -6.0000
u -5.0000 5.0000
L

Introduction, introspection, illustration

Goal2 : implement amalgamation

Introduction, introspection, illustration 40 / 52

’
’
’
’
’
’
’
’
’
’

0
0
3
0
0.
0
0
0
3
0

s N & 8 & s & s o ﬁ
[
NS & s & s S S _M..“ N
[
s & & & & @ o M“ s s
|
c !
m S & & & & 4 o a S °
-+ 1
m iSSesoSssasnNSNsS~SSSS
20 SemerdonSSsSSS~mesS S
m 3000:/02000.032000000
AP - ~ =~ & % 8 e m o aaaaaaaaaaaaaaaaa .
i) o x - -
Es ASPSSSNSSmMmMeSSSS SN
©
c cH
SO~
2 2 S |
o c X - -
ZS7 KnoedsdssmAdsssssssweosm
O
(D) ~e @ = = e e e e e e e e
—= =rEs =
o ===} >
o s ®
T 5 ad
ES E L
A A ®©

Goal2

Goal3 : implement the 2 'inference’

Introduction, introspection, illustration 41 / 52

Goal3 : implement the 2 'inference’

ie=SimpleCtbnInference(ctbn)
ie.makeInference()
gnb.sideBySide(ie.posterior("A"),ie.posterior("B"),ie.posterior("Y"),ie.posterior("X"))

a0 al bo b1 yo y1 x0 x1

0.6667 0.3333 0.4000 0.6000 0.6100 0.3900 0.6065 0.3935

ie=ForwardSampleCtbnInference(ctbn)
ie.makeInference()
gnb.sideBySide(ie.posterior("A"),ie.posterior("B"),ie.posterior("Y"),ie.posterior("X"))

a0 a1l bo b1 yo y1 x0 x1

0.6651 0.3349 0.3968 0.6032 0.6081 0.3919 0.6060 0.3940

41 | 52

Goal3 : implement the 2 'inference’

ie=SimpleCtbnInference(ctbn)
ie.makeInference()
gnb.sideBySide(ie.posterior("A"),ie.posterior("B"),ie.posterior("Y"),ie.posterior("X"))

a0 al bo b1 yo y1 x0 x1

0.6667 0.3333 0.4000 0.6000 0.6100 0.3900 0.6065 0.3935

ie=ForwardSampleCtbnInference(ctbn)
ie.makeInference()
gnb.sideBySide(ie.posterior("A"),ie.posterior("B"),ie.posterior("Y"),ie.posterior("X"))

a0 a1l bo b1 yo y1 x0 x1

0.6651 0.3349 0.3968 0.6032 0.6081 0.3919 0.6060 0.3940

41 | 52

Classes to code

Introduction, introspection, illustration 42 [/ 52

Classes to code

e CIM

Introduction, introspection, illustration 42 [/ 52

Classes to code

o CIM from (gum.Potential)

Introduction, introspection, illustration 42 [/ 52

Classes to code

o CIM from (gum.Potential)
o CTBN,

Introduction, introspection, illustration 42 [/ 52

Classes to code

o CIM from (gum.Potential)
o CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

Introduction, introspection, illustration 42 [/ 52

Classes to code

o CIM from (gum.Potential)
o CTBN, (gum.DiGraph,gum.DiscreteVariable,CIM)

e Convergence

o 'Exact’ method (exp(IM))
e Sampling (Forward Sampling)

Introduction, introspection, illustration 42 [/ 52

CIM : wrapper de Potential

(=):

._pot gum.Potential()

._pot = gum.Potential(pot)
._recordVars()

add() — "CIM":
._pot.add(v)
._recordVars()

nbrDim() o 2
._pot.nbrDim()

extract() - "CIM":
CIM(._pot.extract())

@property
var_names (Dk
._pot.var_names

():
._pot[i]

(

Introduction, introspection, illustration 43 / 52

CIM : Amalgamation

Introduction, introspection, illustration 44 / 52

CIM : Amalgamation

Algorithm 2.2 Amalgamate two nodes of a CTBN.
Amalgamate(X,Y)
1: Qxypaxy) < 0
2: for each (pay\x) € pax\y and (pax\y) € pay\x
3: QY «+o0
fori,j=1,...,|X|and [,k =1,...,|Y]
Q¥ ¢ Qxipaxiy)es

4.
5
6: Q" < Qvipay x)
7 ifi=jAk=1
s
9

Qi ey € 95 + @
elseif i =jAk#I

10: Q()i(.,}/),(‘k,l) = a
11: elseif i AjNk=1
12: k) € G
13: end if

14: end for

15: Qxy\(paxy) <~ QXY

16: QxyPaxy) & Qxypaxy) U{Qxv paxy)}
17: end for

18: return Qxy|pa(xy)

Introduction, introspection, illustration 44 / 52

CIM : Amalgamation

.instantiation()
= cinmX.instantiation()
= .instantiation()

.setFirst()
.end():
.setVals(i)
.setVals(i)

Algorithm algamate two nodes of a CTBN. _chgVal(:7 [CIM.var_i(v.name))])

Amalgamate(X,Y) g
1. QX) [Pa(XY) (_0 iX.chgVval([CIM.var_i(v.name())])

2: for each (pay\x) € pax\y and (pax\y) € pay\x _—
QY «+o0 iX[CIM.var_i(v)] == iX[CIM.var_j(v)]:
fori,j=1,...,|X|and [,k =1,...,|Y]
QF Qxipar

:var‘,i()] == iY[CIM.var_j(V)]:

*, ;imX[
else if ¢ # Jin k
T wn < By .
end if

end for

Qxv|(paxy) — QY

QxyPaxy) & Qxypaxy) U{Qxv paxy)}
17: end for
18: return Qxy|pa(xy)

Introduction, introspection, illustration 44 / 52

Implementations

e CIM : 210 lines
o CTBN
o Inférence

e Simple
e Sampling

Introduction, introspection, illustration 45 [52

Implementations

e CIM : 210 lines
o CTBN
o Inférence

e Simple
e Sampling

Introduction, introspection, illustration 45 [52

Mainly : synchronization of 3 very
differents objects :

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

@ oriented graph
(gum.DiGraph),

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :
@ oriented graph
(gum.DiGraph),
@ Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

Introduction, introspection, illustration 46 / 52

CTBN

Mainly : synchronization of 3 very
differents objects :

@ oriented graph
(gum.DiGraph),

@ Discrete random variables in
a dictionnary
(gum.DiscreteVariable)

@ CIMs in a dictionnary.

Introduction, introspection, illustration 46 / 52

CTBN

(IE
.graph = gum.DiGraph()
.cim = {}
.id2var = {}
.name2id = {}

add(: gum.DiscreteVariable) —
= (.graph.addNode())
.id2var[n] =

Mainly : synchronization of 3 very -name2id[var.nane] =
differents objects : .bn@. add (var)

@ oriented graph = var.clone()
(um.DiGraph), .setName(CIM.var_i(var.name()))

= .clone()

@ Discrete random variables in sethane(CIN. var_j(var.nane))

a dictionnary

X . .cim[n] = CIM().add(v_j).add(v_i)
(gum.DiscreteVariable)

@ CINMs in a dictionnary.

addArc (vall: val2:) — Tuplel)
._name0rId(vall)
._name0rId(val2)

.graph.addArc(n2)
.cim[n2].add(.id2var[n1l])
(n2)

Introduction, introspection, illustration 46 / 52

Implementations

o CIM : 210 lines
e CTBN : 190 lines
@ Inférence

e Simple
e Sampling

Introduction, introspection, illustration 47 [52

Implementations

o CIM : 210 lines
e CTBN : 190 lines
@ Inférence

e Simple
e Sampling

ctbn = Ctbn()

ctbn. add (gum. LabelizedVariable("a1"1))
ctbn.add(gum. LabelizedVariable("b1"]))
ctbn. add (gum. LabelizedVariable(x1"1))
ctbn.add (gun. LabelizedVariable(, "yt

ctbn.addArc("A", "X")
ctbn.addArc("Y", "X")
ctbn.addArc("8", "Y")
ctbn.addArc("X", "Y")

ctbn.CM("A") [:] = [[-1, 1],

ctbn.CIM("B") [:] = [[-3, 3],
[

1
ctbn. CIM("X") [{"A": "af @ "yo"yl = [[-1, 1],

2, 21
cton. CIM("™X") [{"A o' = 111, 11,
B, 311
ctbn. CIM("X") [{"A": @ "y1"} = [[-5, 5],
16, -611
ctbn. CIM("X") [{"A’ . 1"} = [[-5, 5],
14, -a1l
ctbn. CIM("Y") [{"B": : "x0"}] = [[-2, 2],
5, =511
cton. CIM("Y") [{"B . 0} = [[3, 31,
14, -411
ctbn. CIM("Y") [{"B": @ "x1"}] = [[-3, 3],

ctbn. CIM("Y") [{"B'

gnb. sideBySide(ctbn, ctbn.CIM("A")._pot, ctbn.CIM("X")._pot)

-1.0000

H 2.0000
-1.0000
° ° 30000

-5.0000

60000

° -5.0000

40000

Introduction lustration

47 | 52

Inférence simple

Introduction, introspection, illustration 48 / 52

Inférence simple

SimpleCtbnInference(CtbnInference):

cim: Ctbn):
0. (cim)
._joint =

makeInference(
= CIMQ)
._model.nodes():
= g.amalgamate(._model.CIM(nod))

.from_matrix (expm(* g.to_matrix()))

= gum.Potential()
.var_names:
[-1] = :
.add(g._pot.variable(n))
.FillWith(1) .normalize()

._joint = * (._pot).margSumOut(t0.var_names)

posterior(name:
= CIM.var_j(name)
gum.Potential().add(

) — gum.Potential:

._model.variable(name)) . fillWith(._joint.margSumIn(vi), [vil)

Introduction, introspection, illustration

48 | 52

Implémentations

o CIM : 210 lines
e CTBN : 190 lines

@ Inférence

e Simple : 23 lines
e Sampling

Introduction, introspection, illustration 49 / 52

Forward Sampling

Introduction, introspection, illustration 50 / 52

Forward Sampling

Algorithm 2.1 Forward sample CTBN.
ForwardSample(N')

1: for each X e N
choose X (0) by sampling from B
3: end for
410,00
5: repeat until termination
6: Append(o, (X, t))
T
8:
9.

Y

for each X e N/
if time(X) # null then continue end for
Ax < Axpax)

10: i+ X(t)

11: At ~ Exponential(a; ;)
12: time(X) + t + At

13: end for

14: X' + argminy (time(X))

15: t time(X')

16: X (t) ~ Multinomial(Ax, X (¢))
17: time(X') = null

18: for each Y € Ch(X’)

19: time(Y) = null

20: end for

21: end repeat

22: return o

50 / 52

Forward Sampling

Algorithm 2.1 Forward sample CTBN.
ForwardSample(N')

1: for each X e N
choose X (0) by sampling from B
3: end for
410,00
5: repeat until termination
6: Append(o, (X, t))
T
8:
9.

Y

for each X e N/
if time(X) # null then continue end for
Ax < Axpax)

10: i+ X(t)

11: At ~ Exponential(a; ;)
12: time(X) + t + At

13: end for

14: X' + argminy (time(X))

15: t time(X')

16: X (t) ~ Multinomial(Ax, X (¢))
17: time(X') = null

18: for each Y € Ch(X’)

19: time(Y) = null

20: end for

21: end repeat

22: return o

50 / 52

Conclusion

o CIM : 210 lines
o CTBN : 190 lines
@ Inférence

e Simple : 23 lines
e Sampling 90 lines

Introduction, introspection, illustration 51 / 52

Conclusion

o CIM : 210 lines
o CTBN : 190 lines
@ Inférence

e Simple : 23 lines
e Sampling 90 lines

Introduction, introspection, illustration 51 / 52

Conclusion

o CIM : 210 lines
o CTBN : 190 lines
@ Inférence

e Simple : 23 lines
e Sampling 90 lines

Code based on the result of a student project (L2).

Introduction, introspection, illustration 51 / 52

Conclusion

o CIM : 210 lines
o CTBN : 190 lines
@ Inférence

e Simple : 23 lines
e Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

Introduction, introspection, illustration

Conclusion

o CIM : 210 lines
o CTBN : 190 lines
@ Inférence

e Simple : 23 lines
e Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

@ model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

Introduction, introspection, illustration

Conclusion

o CIM : 210 lines
o CTBN : 190 lines
@ Inférence

e Simple : 23 lines
e Sampling 90 lines

Code based on the result of a student project (L2).

goals reached !

@ model CTBN : compact representation of continuous-time Markov processes
with a very large state space .

@ pyAgrum : toolbox for the implementation of new graphical models.

Introduction, introspection, illustration

@ aGrUM/pyAgrum still a lab/academic tool. We will not stop maintaining &
developing !

@ Many users imply many responsabilities

o Interaction
gitlab issues, discord, gitter, linkedin, researchGate, what else ?
e Structuration
communauty (?), consortium (?)
e Scientific orientation ?
@ models
o algorithms
@ scientific committee
e ?
o Development orientation ?
@ weaknesses, strengths
missing features
Ragrum, JSagrum

Steering committee
?

Introduction, introspection, illustration 52 / 52

	Plan
	introduction
	short history
	components
	opensource project
	next

	introspection : focus on 3 elementary Components
	illustration
	The model (Liessman Eric Sturlaugson, Montana, 2014)
	Quick implementation of CTBNs using pyAgrum

