
Ketemwabi Yves Shamavu, Ph.D.

Link to recording: https://skyel.net/pages/blog/post/1648526906.html

https://skyel.net/pages/blog/post/1648526906.html
https://skyel.net/pages/blog/post/1648526906.html


Collaborative Artificial Intelligence

• Human cognition + Artificial 
intelligence

• Goal:

o Trust

o Social acceptance

o Better performance

o Transparency
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Black Box Models v. Alternatives

• Black box examples: 

o Deep neural networks

o Random forests

o Other models with stacks of 
simpler computations

• Alternatives:

o Causal networks

o Transparent models; i.e., 
Bayesian nets

o Explainability
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Ubiquitous Black Box Models

• Automated interviewing 
systems

• Clinical decisions

• Financial decisions

• Legal and court decisions
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Agenda

▪ Illustrative Example (Using PyAgrum + Microsoft Azure)

▪ Inference With Forward Probabilities

▪ The Case For Inverse Probabilities

▪ Black Boxes And Explainable Techniques 

▪ Considerations For The Future



PART I
Illustrative Example 
(Using PyAgrum + Microsoft Azure)



Bayes Net Structure Inspired By 
Kedir N Turi, Ph.D. Et Al. 
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Bayes Net Structure Inspired By 
Kedir N Turi, Ph.D. Et Al. 

8*This structure is based on literature but wasn’t reviewed by experts



Demo-1
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Microsoft Azure 
Notebooks

+

pyAgrum



PART II
Inference With Forward 
Probabilities



Training And Inferencing 
Algorithms

• Training

o Maximum likelihood estimation: 
a frequentist approach

• Inferencing

o Exact

o Approximate

11



Approximate Inferencing

• Stochastic simulation

• Model simplification

• Loopy propagation
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Deductive Reasoning

P risk BMI ≥ 27.5 = ?
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From cause to effect



From (Potential) Causes To Effect

14*This structure is based on literature but wasn’t reviewed by experts



Exact Inferencing

• Lazy propagation

• Variable elimination

• Message passing
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Inferencing Tricks

• Transformation into a singly-
connected graph

• D-separation

• Markov blanket
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Demo-2
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Microsoft Azure 
Notebooks

+

pyAgrum



PART III
The Case For Inverse Probabilities



Time And Causality

• Time is a precondition for 
causation

• Effect comes after the cause
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From Effect To Cause
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Risk status 

at time T = 1

Risk status 

at time T = 2

Risk status 

at time T = n



Inductive Reasoning
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Ladder Of Causation
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Observing

Intervening

Imagining

Establish 

associations

Experiment 

with facts

Envision 

counterfactuals



Experimentation
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Observing

Intervening

Imagining

Establish 

associations

Experiment 

with facts

Envision 

counterfactuals



Counterfactuals

24

Observing

Intervening

Imagining

Establish 

associations

Experiment 

with facts

Envision 

counterfactuals



Counterfactuals: 
Imagination, Abstract Simulations
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Inverse Probabilities And 
Counterfactuals
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Beyond feature importance and 

acausal Shapley values



PART IV
Black Boxes And Explainable 
Techniques 



Strengths Of Black Box Models
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Black box models shine in complex applications:

• Object recognition

• Speech translation

• Textual inferencing (NLI)

• Etc.



Connectionism And Layer-
Stacking
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Issues With Layer-Stacking (Multi-
Layered Models)
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• Complexity through a chain of simpler 

computations

• Input features transformations

• Output could be unanticipated by end-

users and developers alike



Fixing Black Box Opacity
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• Local versus global 

• Model-agnostic versus model-specific



Local Versus Global
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Model-Agnostic Versus 
Model-Specific
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Example: Shapley Values
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• Coalition of factors

• Distributing fairly the outcome 

probability amongst the input 

features



Demo-3

35

Microsoft Azure 
Notebooks

+

pyAgrum



PART V
Considerations For The Future



Collaborative AI As An Integrative 
Pipeline
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• Integrate not only pipelines of 

AI/ML models 

• But also, keep human-in-the-

loop

• Explanations + active learning



Context-Specific Explanations
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Akula et al.



Customized Explanations
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Improve Automatic Learning With 
A Human Touch
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• AI learns automatically how to 

optimize an objective function 

based on data

• Self-supervision

• Human-out-of-the-loop?



Automatic Learning And The 
Failure Of Intent. Who’s To Blame?
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Artificial + Human Intelligence
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CONCLUSION



Recap

▪ Illustrative Example (Using PyAgrum + Microsoft Azure)

▪ Inference With Forward Probabilities

▪ The Case For Inverse Probabilities

▪ Black Boxes And Explainable Techniques 

▪ Considerations For The Future



Takeaways

• Open-source rocks! (aGrUM/pyAgrum)

• Democratize AI beyond PhDs and into mainstream

• Azure high-performance computing (HPC) and others

• Collaborative AI: Explainable + Interactive

• Let’s build trustable AI!
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