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Collaborative Artificial Intelligence

* Human cognition + Artificial

intelligence
* Goal:
o  Trust
o Social acceptance
o Better performance
o Transparency



' Black Box Models v. Alternatives

* Black box examples:
o Deep neural networks '
o Random forests
o Other models with stacks of ~
simpler computations

e Alternatives:
o Causal networks

o Transparent models; i.e.,
Bayesian nets

o Explainability



'Ubiquitous Black Box Models

* Automated interviewing
systems

e Clinical decisions

* Financial decisions

* Legal and court decisions
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Inference With Forward
Probabilities



'Training And Inferencing
Algorithms

* Training
o Maximum likelihood estimation:
a frequentist approach

* Inferencing
o Exact
o Approximate



'Approximate Inferencing

e Stochastic simulation

* Model simplification

* Loopy propagation




' Deductive Reasoning

P(risk|BMI > 27.5)=?

From cause to effect




From (Potential) Causes To Effect
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'Exact Inferencing

* Lazy propagation

e Variable elimination

* Message passing




'Inferencing Tricks

* Transformation into a singly-
connected graph

* D-separation

* Markov blanket
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The Case For Inverse Probabilities



'Time And Causality

Risk status
attimeT=1

Risk status
attime T=2

Risk status
attime T=n

* Time is a precondition for
causation

* Effect comes after the cause




' From Effect To Cause
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'Inductive Reasoning




Ladder Of Causation
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'Counterfactuals:
Imagination, Abstract Simulations




' Inverse Probabilities And
Counterfactuals

Beyond feature importance and
acausal Shapley values




Black Boxes And Explainable
Techniques



'Strengths Of Black Box Models

Black box models shine in complex applications:

* Object recognition
* Speech translation

e Textual inferencing (NLI)
 Etc.




'Connectionism And Layer-
Stacking

Deep neural network
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'Issues With Layer-Stacking (Multi-
Layered Models)

* Complexity through a chain of simpler
computations

* Input features transformations

* Output could be unanticipated by end-
users and developers alike




' Fixing Black Box Opacity

* Local versus global

* Model-agnostic versus model-specific




' Local Versus Global

Global i i Local




' Model-Agnostic Versus
Model-Specific




' Example: Shapley Values

e Coalition of factors

* Distributing fairly the outcome
probability amongst the input
features
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Considerations For The Future



'Coll.aborative Al As An Integrative
Pipeline

* Integrate not only pipelines of
Al/ML models

* But also, keep human-in-the-
loop

* Explanations + active learning




Context-Specific Explanations

User Question: Is the Person wearing any Jacket?

—
- >
Machine's Explanation: Bubble for Left Arm

User Question: Give me more explanation?
—

Machine’s Explanation: Bubble for Left Leg

Machine (M)

Akula et al.



'Customized Explanations




' Improve Automatic Learning With
A Human Touch

* Al learns automatically how to
optimize an objective function
based on data

* Self-supervision

* Human-out-of-the-loop?




'Automatic Learning And The
Failure Of Intent. Who's To Blame?



'Arl:ificial. +* Human Intelligence
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Takeaways

 Open-source rocks! (aGrUM/pyAgrum)

* Democratize Al beyond PhDs and into mainstream
* Azure high-performance computing (HPC) and others
* Collaborative Al: Explainable + Interactive

e Let’s build trustable Al!
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